首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Xa21对白叶枯病菌(Xanthomonas oryzae pv. oryzae, Xoo)具有广谱抗性, 是最早被克隆的水稻(Oryza sativa)抗白叶枯病基因。前期研究表明, OsWRKY42可能在Xa21介导的抗病反应中发挥作用。在Xa21基因遗传背景下制备了OsWRKY42的RNA干扰株系, 将经免疫印迹确认的转基因株系接种白叶枯病菌, 结果表明, 与抗病对照4021相比, 转基因株系的病斑长度增加, 说明OsWRKY42的丰度下调抑制了Xa21对白叶枯病的抗性反应。免疫印迹分析表明, 在OsWRKY42-RNAi转基因水稻中, OsPR6、OsPR15和OsPR16的蛋白质丰度降低, OsPR1A、OsPR1B、OsPR2和OsPR10A的蛋白质丰度升高, 表明这些病程相关蛋白质可能位于OsWRKY42基因的下游, 受OsWRKY42调控并参与Xa21介导的抗病性。研究结果表明, OsWRKY42是Xa21介导的抗白叶枯病途径新元件, 增进了对Xa21介导的水稻抗病机理的认识。  相似文献   

2.
Mitogen-activated protein kinase kinase kinase (MAPKKK) are the first components of MAPK cascades, which play pivotal roles in signaling during plant development and physiological processes. The genome of rice encodes 75 MAPKKKs, of which 43 are Raf-like MAPKKKs. The functions and action modes of most of the Raf-like MAPKKKs, whether they function as bona fide MAPKKKs and which are their downstream MAPKKs, are largely unknown. Here, we identified the osmapkkk43 mutant, which conferred broad-spectrum resistance to Xanthomonas oryzae pv. oryzae (Xoo), the destructive bacterial pathogen of rice. Oryza sativa (Os)MAPKKK43 encoding a Raf-like MAPKKK was previously known as Increased Leaf Angle 1 (OsILA1). Genetic analysis indicated that OsILA1 functioned as a negative regulator and acted upstream of the OsMAPKK4–OsMAPK6 cascade in rice–Xoo interactions. Unlike classical MAPKKKs, OsILA1 mainly phosphorylated the threonine 34 site at the N-terminal domain of OsMAPKK4, which possibly influenced the stability of OsMAPKK4. The N-terminal domain of OsILA1 is required for its homodimer formation and its full phosphorylation capacity. Taken together, our findings reveal that OsILA1 acts as a negative regulator of the OsMAPKK4–OsMAPK6 cascade and is involved in rice–Xoo interactions.  相似文献   

3.
4.
Rice blast and bacterial blight are important diseases of rice (Oryza sativa) caused by the fungus Magnaporthe oryzae and the bacterium Xanthomonas oryzae pv. oryzae (Xoo), respectively. Breeding rice varieties for broad-spectrum resistance is considered the most effective and sustainable approach to controlling both diseases. Although dominant resistance genes have been extensively used in rice breeding and production, generating disease-resistant varieties by altering susceptibility (S) genes that facilitate pathogen compatibility remains unexplored. Here, using CRISPR/Cas9 technology, we generated loss-of-function mutants of the S genes Pi21 and Bsr-d1 and showed that they had increased resistance to M. oryzae. We also generated a knockout mutant of the S gene Xa5 that showed increased resistance to Xoo. Remarkably, a triple mutant of all three S genes had significantly enhanced resistance to both M. oryzae and Xoo. Moreover, the triple mutant was comparable to the wild type in regard to key agronomic traits, including plant height, effective panicle number per plant, grain number per panicle, seed setting rate, and thousand-grain weight. These results demonstrate that the simultaneous editing of multiple S genes is a powerful strategy for generating new rice varieties with broad-spectrum resistance.  相似文献   

5.
Grain size and leaf angle are key agronomic traits that determine final yields in rice. However, the underlying molecular mechanisms are not well understood. Here we demonstrate that the Oryza sativa Mitogen Activated Protein Kinase Kinase Kinase OsMKKK70 regulates grain size and leaf angle in rice. Overexpressing OsMKKK70 caused plants to produce longer seeds. The osmkkk62/70 double mutant and the osmkkk55/62/70 triple mutant displayed significantly smaller seeds and a more erect leaf angle compared to the wild type, indicating that OsMKKK70 functions redundantly with its homologs OsMKKK62 and OsMKKK55. Biochemical analysis demonstrated that OsMKKK70 is an active kinase and that OsMKKK70 interacts with OsMKK4 and promotes OsMAPK6 phosphorylation. In addition, the osmkkk62/70 double mutant showed reduced sensitivity to Brassinosteroids (BRs). Finally, overexpressing constitutively active OsMKK4, OsMAPK6, and OsWRKY53 can partially complement the smaller seed size, erect leaf, and BR hyposensitivity of the osmkkk62/70 double mutant. Taken together, these findings suggest that OsMKKK70 might regulate grain size and leaf angle in rice by activating OsMAPK6 and that OsMKKK70, OsMKK4, OsMAPK6, and OsWRKY53 function in a common signaling pathway that controls grain shape and leaf angle.  相似文献   

6.
Genetic polymorphism within the genomes of bacterial pathogens determines their evolutionary potential during long-term interaction with their hosts. To investigate the level of genetic variation in Xanthomonas oryzae pv. oryzae (Xoo), the causative agent of rice bacterial blight disease, three DNA marker systems, including (i) restriction fragment length polymorphism (RFLP) of the avrBs3/PthA family genes (avrXa27), (ii) RFLP of insertion (IS) elements and (iii) random amplified polymorphic DNA (RAPD) markers, were used to detect polymorphism among 32 Xoo strains that differed in their virulence patterns. All these strains contained multiple avrXa27 homologs that were variable in copy number and genomic location. RFLP of six IS elements revealed that these mobile sequences were abundant in Xoo genomes, with 150 of the total of 165 discernable markers being variable. Thirty-eight decamer primers of RAPD amplified a total of 691 bands, with 100% of them being variable. In addition, analysis of molecular variance (AMOVA) of data from RFLP analysis of IS elements and from RAPD analysis showed that most of the genetic variation residues were within Xoo populations, rather than between populations. Although all three DNA marker systems supported that substantial variation was maintained in Xoo genomes, Mantel tests did not identify significant correlation between the similarity coefficients calculated from them. The results of the present study indicated that Xoo genomes contain a high level of genetic polymorphism, which greatly facilitates the evolution of this important pathogen during interaction with its host rice plant.  相似文献   

7.
Plant stomata close rapidly in response to a rise in the plant hormone abscisic acid(ABA) or salicylic acid(SA) and after recognition of pathogenassociated molecular patterns(PAMPs). Stomatal closure is the result of vacuolar convolution, ion efflux, and changes in turgor pressure in guard cells. Phytopathogenic bacteria secrete type Ⅲ effectors(T3Es) that interfere with plant defense mechanisms, causing severe plant disease symptoms. Here, we show that the virulence and infection of Xanthomonas...  相似文献   

8.
9.
MicroRNAs (miRNAs) play important roles in rice response to Magnaporthe oryzae, the causative agent of rice blast disease. Studying the roles of rice miRNAs is of great significance for the disease control. Osa‐miR167d belongs to a conserved miRNA family targeting auxin responsive factor (ARF) genes that act in developmental and stress‐induced responses. Here, we show that Osa‐miR167d plays a negative role in rice immunity against M. oryzae by suppressing its target gene. The expression of Osa‐miR167d was significantly suppressed in a resistant accession at and after 24 h post inoculation (hpi), however, its expression was significantly increased at 24 hpi in the susceptible accession upon M. oryzae infection. Transgenic rice lines over‐expressing Osa‐miR167d were highly susceptible to multiple blast fungal strains. By contrast, transgenic lines expressing a target mimicry to block Osa‐miR167d enhanced resistance to rice blast disease. In addition, knocking out the target gene ARF12 led to hyper‐susceptibility to multiple blast fungal strains. Taken together, our results indicate that Osa‐miR167d negatively regulate rice immunity to facilitate the infection of M. oryzae by downregulating ARF12. Thus, Osa‐miR167d‐ARF12 regulatory module could be valuable in improvement of blast‐disease resistance.  相似文献   

10.
本文研究了野生稻暗色有隔内生真菌稻镰状瓶霉与水稻的共生关系,通过根部接种DsRED荧光标记菌株,观察稻镰状瓶霉在水稻根系内的定殖,并对其抗白叶枯病特性进行调查,结果发现:经叶部接种白叶枯病菌后,对照组发病严重,病级集中在7级和9级,分别占比43.33%和34.67%,病情指数为79.26;相比之下,接种了稻镰状瓶霉的水稻植株发病较轻,叶片病斑面积小,并伴随零星黑色过敏性坏死斑出现,未发病植株占8%,72%的植株病级为1级,病情指数仅为15.26。稻镰状瓶霉对水稻白叶枯病的防治效果达到80.75%。稻镰状瓶霉的定殖能够引起叶片中超氧化物歧化酶、过氧化氢酶和过氧化物酶活性极显著提高,分别是对照组的5.26、12.08和10.53倍;诱导PR1aPR1b显著上调表达8.71和3.37倍,AOSOsSAUR2EL5基因显著下调表达0.28、0.57和0.65倍。利用野生稻内生真菌防控水稻白叶枯病,在国内外尚属首次,可为水稻白叶枯病的生物防治提供新途径。  相似文献   

11.
12.
13.
2014年,自云南省沧源县及耿马县陆稻地方品种上分离99个稻瘟病菌稻巨座壳单孢菌株,采用4个已知交配型的标准菌株对其进行育性和交配型测定。结果表明,两地稻巨座壳菌株具较高的育性,平均可交配率高达90.8%,且可育菌株中,MAT1-1和MAT1-2菌株分别占60.9%和39.1%;分别随机对沧源县南撒村和班考村同一田块MAT1-1型和MAT1-2型可育两性菌株进行交配,均能发育形成成熟的子囊孢子,说明该陆稻地区稻巨座壳菌的可育菌株数量丰富,且于适宜条件极有可能产生有性世代;利用22个以丽江新团黑谷为背景、持有不同抗稻瘟病基因的单基因系对分离的99个稻巨座壳菌株的致病性进行测定,明确了不同菌株的致病性,且发现Pik-hPiz-tPi5Pi9基因表现出良好的抗性,平均抗病频率达到90.0%以上、是抗病育种的优异抗原;同时,菌株对特定抗性基因致病性的明确,也为选用不同菌株的组合开展有性杂交,构建遗传群体开展稻巨座壳菌无毒基因的克隆鉴定奠定了基础。  相似文献   

14.
粳稻子预44抗LP11稻瘟病菌基因Pizy6(t)的定位   总被引:2,自引:0,他引:2  
稻瘟病是世界范围内严重威胁水稻(Oryza sativa)生产可持续发展的主要病害之一,每年造成10%–30%的水稻产量损失。抗瘟水稻品种的培育和育种利用是解决稻瘟病危害最经济有效的方法。对新的致病性菌株进行分离和筛选是定位与克隆抗病新基因及抗病育种的基础。选择分离自不同稻瘟病发生重灾区的单孢菌株,对广谱抗瘟水稻子预44和感病水稻江南香糯进行致病性鉴定,筛选出两材料间致病性差异明显的5个菌株;进一步利用子预44、湘资3150、9311、日本晴、丽江新团黑谷、中花11、TP309和江南香糯8个抗瘟性不同的水稻材料,对筛选的菌株进行致病性鉴定。结果显示,LP11能使广谱抗瘟籼稻湘资3150严重发病,推测其很可能是新进化出来的强致病菌株。利用子预44和江南香糯杂交构建的F2群体进行抗性遗传分析,结果表明子预44对LP11菌株的抗性是由单显性基因控制。利用SSR分子标记和图位克隆方法在子预44中定位了1个抗稻瘟病基因Pizy6(t)。研究结果不仅为抗病相关研究提供了有价值的新菌株,而且为子预44中抗稻瘟病基因Pizy6(t)的克隆奠定了基础。  相似文献   

15.
稻镰状瓶霉Falciphora oryzae是本实验室从野生稻根系分离获得的一株DSE,具有促生、防病等作用。本研究旨在对其促生机制进行初探。在室内平板共培养条件下,对水稻种子接种稻镰状瓶霉菌饼(4个/皿),测定植株生长指标、营养元素含量及营养吸收相关基因表达量;温室盆栽条件下,将稻镰状瓶霉以菌肥形式(60g/桶)与水稻进行盆栽共培养,测定植株农艺性状指标。结果表明,接种稻镰状瓶霉后,平板上的水稻幼苗的株高、叶宽和茎秆直径显著增加,根长并未受影响。稻镰状瓶霉能够促进水稻根系对营养元素的吸收,提高地上部分和根系组织中N、P、K、S、Fe和Mg元素的含量,诱导根部与营养元素吸收相关的调控基因OsPTR9OsAMT3;2OsPT4OsSULTR3;1OsMRS2-8OsHAK16OsYSL15OsIRO2的显著上调表达。盆栽试验表明,稻镰状瓶霉显著提高了水稻各农艺性状指标,包括叶宽、茎秆直径、植株鲜重、植株干重、叶绿素含量和光合强度。结果表明,稻镰状瓶霉的根部定殖能够诱导营养元素吸收相关基因的上调表达,从而促进根系对营养元素的吸收,进而促进水稻植株的生长。  相似文献   

16.
云南疣粒野生稻稻瘟病抗性   总被引:1,自引:0,他引:1  
野生稻(Oryza rufipogo)保存有许多栽培稻(O. sativa)不具备或已经消失的优异基因资源, 是扩大栽培稻遗传背景、改良产量与品质、提高抗病虫害及抗逆境能力的重要基因库。疣粒野生稻(O. meyeriana)是中国3种野生稻资源之一, 主要分布在云南。为进一步了解其稻瘟病抗性, 首先利用来自不同稻作区的稻瘟病菌株, 通过注射接种法对疣粒野生稻进行系统的稻瘟病抗性鉴定, 发现疣粒野生稻对接种的所有稻瘟病菌株都感病。进一步采用3'/5' RACE方法, 从疣粒野生稻中克隆了水稻同源基因Pid2Pid3, 并构建过表达转基因株系对基因功能进行了研究。结果表明, Pid2Pid3与疣粒野生稻中同源基因间在DNA和氨基酸水平上有较大的序列差异, 过表达转基因的日本晴植株对稻瘟病菌的敏感性与对照相似。推测疣粒野生稻在自然接种条件下, 表现出的抗稻瘟病表型很可能是其旱生叶片结构特征形成了对稻瘟病菌侵染的天然屏障。对控制疣粒野生稻这一类性状基因资源的挖掘和利用, 有利于优良抗性水稻品种的培育。研究结果为疣粒野生稻的研究利用提供了新信息和新思路。  相似文献   

17.
稻瘟病是世界上影响水稻(Oryza sativa)粮食生产的主要病害之一, 抗病基因的发掘与利用是抗病育种的基础和核心。随着寄主水稻和病原菌稻瘟病菌(Magnaporthe oryzae)基因组测序和基因注释的完成, 水稻和稻瘟病菌的互作体系成为研究植物与真菌互作的模式系统。该文对稻瘟病抗病基因的遗传、定位、克隆及育种利用进行概述, 并通过生物信息学分析方法, 探讨了水稻全基因组中NBS-LRR类抗病基因在水稻12条染色体上的分布情况, 同时对稻瘟病菌无毒基因的鉴定及无毒蛋白与抗病蛋白的互作进行初步分析。最后对稻瘟病抗病基因研究存在的问题进行分析并展望了未来的研究方向, 以期为水稻抗稻瘟病育种发展和抗病机制的深入理解提供参考。  相似文献   

18.
粳稻子预44中稻瘟病数量抗性位点分析   总被引:4,自引:2,他引:2  
周镕  王波  杨睿  李书  樊琳琳  曾千春  罗琼 《植物学报》2015,50(6):691-698
稻瘟病是世界范围内影响水稻(Oryza sativa)生产的主要病害。抗稻瘟病基因的发掘和育种利用是控制稻瘟病经济、环保的有效措施。为了揭示云南地方水稻品种子预44广谱持久抗瘟机制, 利用江南香糯和子预44杂交构建的F7重组自交群体, 采用苗期稻瘟病菌自然诱发接种法, 通过调查田间抗瘟性表型数据, 结合基因型数据对子预44中的数量抗瘟性位点进行了分析。结果表明, 在连锁系数(logarithm of odds, LOD)大于2.0的域值上, 共检测出13个QTLs, 分别位于第1、2、6、8、12号染色体上。不同位点表型贡献值差异较大, 范围为5.8%-21.9%, 其中8号染色体上标记RM72-RM404之间的QTLs可解释约61.9%的表型变异, 很可能为一个主效抗瘟QTL位点。多个位点的主效和微效抗性相结合可能是子预44持久稻瘟病抗性的分子基础。  相似文献   

19.
Flavonoids are polyphenolic secondary metabolites that function as signaling molecules, allopathic compounds, phytoalexins, detoxifying agents and antimicrobial defensive compounds in plants. Blast caused by the fungus Magnaporthe oryzae is a serious disease affecting rice cultivation. In this study, we revealed that a natural flavonoid, tangeretin, substantially delays the formation of M. oryzae appressoria and blocks the development of blast lesions on rice plants. Our data suggest that tangeretin has antioxidant activity that interferes with conidial cell death/ferroptosis, which is critical for M. oryzae pathogenicity. Tangeretin showed a ferroptosis inhibition efficacy comparable to the well-established liproxstatin-1. Furthermore, overexpression of the NADPH oxidases NOX1 or NOX2 significantly decreased sensitivity toward tangeretin treatment, suggesting Nox-mediated lipid peroxidation as a possible target for tangeretin in regulating redox signaling and ferroptosis in M. oryzae. Our nursery and field tests showed that application of tangeretin can effectively mitigate overall disease symptoms and prevent leaf blast. Our study reveals the plant-derived fungal ferroptosis inhibitor tangeretin as a potential and novel antifungal agrochemical for the sustainable prevention of the devastating blast disease in important cereal crops.  相似文献   

20.
Mitogen-activated protein kinases (MAPK) signalling cascades are activated by extracellular stimuli such as environmental stresses and pathogens in higher eukaryotic plants. To know more about MAPK signalling in plants, aMAPK cDNA clone, OsMAPK33, was isolated from rice. The gene is mainly induced by drought stress. In phylogenetic analysis, OsMAPK33 (Os02g0148100) showed approximately 47-93% identity at the amino acid level with other plant MAPKs. It was found to exhibit organ-specific expression with relatively higher expression in leaves as compared with roots or stems, and to exist as a single copy in the rice genome. To investigate the biological functions of OsMAPK33 in rice MAPK signalling, transgenic rice plants that either overexpressed or suppressed OsMAPK33 were made. Under dehydration conditions, the suppressed lines showed lower osmotic potential compared with that of wild-type plants, suggesting a role of OsMAPK33 in osmotic homeostasis. Nonetheless, the suppressed lines did not display any significant difference in drought tolerance compared with their wild-type plants. With increased salinity, there was still no difference in salt tolerance between OsMAPK33-suppressed lines and their wild-type plants. However, the overexpressing lines showed greater reduction in biomass accumulation and higher sodium uptake into cells, resulting in a lower K+/Na+ ratio inside the cell than that in the wild-type plants and OsMAPK33-suppressed lines. These results suggest that OsMAPK33 could play a negative role in salt tolerance through unfavourable ion homeostasis. Gene expression profiling of OsMAPK33 transgenic lines through rice DNA chip analysis showed that OsMAPK33 altered expression of genes involved in ion transport. Further characterization of downstream components will elucidate various biological functions of this novel rice MAPK.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号