首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
    
Chikungunya virus (CHIKV) is a re-emerging mosquito-transmitted RNA virus causing joint and muscle pain. To better understand how CHIKV rewires the host cell and usurps host cell functions, we generated a systematic CHIKV-human protein-protein interaction map and revealed several novel connections that will inform further mechanistic studies. One of these novel interactions, between the viral protein E1 and STIP1 homology and U-box containing protein 1 (STUB1), was found to mediate ubiquitination of E1 and degrade E1 through the proteasome. Capsid associated with G3BP1, G3BP2 and AAA+ ATPase valosin-containing protein (VCP). Furthermore, VCP inhibitors blocked CHIKV infection, suggesting VCP could serve as a therapeutic target. Further work is required to fully understand the functional consequences of these interactions. Given that CHIKV proteins are conserved across alphaviruses, many virus-host protein-protein interactions identified in this study might also exist in other alphaviruses. Construction of interactome of CHIKV provides the basis for further studying the function of alphavirus biology.  相似文献   

2.
3.
    
Zhou  Hui  Qian  Qi  Shu  Ting  Xu  Jiuyue  Kong  Jing  Mu  Jingfang  Qiu  Yang  Zhou  Xi 《中国病毒学》2020,35(4):436-444
  相似文献   

4.
    
Diabetic retinopathy (DR) is the prevalent microvascular complication of diabetes mellitus (DM), and it may lead to permanent blindness. The previous publication has indicated that both inflammatory response and oxidative stress are critical factors involved in DR progression, however, the accurate regulatory mechanism remains to be revealed. Src homology region 2 (SH2)-containing protein tyrosine phosphatase 2 (SHP2), a member of the protein tyrosine phosphatase family, was reported to play a role in diabetic nephropathy, whereas its function in DR was unknown and required further exploration. The level of phosphorylated, not the total, SHP2 increased in the retinas of rats with streptozotocin injection-induced DM. Further, the intravitreal injection of SHP2 shRNA lentivirus alleviated retinal pathological changes, and inhibited inflammatory response and oxidative stress, which were accompanied with Yes-associated protein 1 (YAP1) deactivation in DR rats. Additional co-immunoprecipitation results confirmed the interaction of SHP2 and YAP1. Collectively, our data preliminarily show that DR amelioration-induced by SHP2 inhibition in rats may attribute to the deactivation of YAP1 pathway.  相似文献   

5.
6.
7.
In Caenorhabditis elegans, specific Argonaute proteins are dedicated to the RNAi and microRNA pathways. To uncover how the precise Argonaute selection occurs, we designed dsRNA triggers containing both miRNA and siRNA sequences. While dsRNA carrying nucleotides mismatches can only enter the miRNA pathway, a fully complementary dsRNA successfully rescues let-7 miRNA function and initiates silencing by RNAi. We demonstrated that RDE-1 is essential for RNAi induced by the perfectly paired trigger, yet is not required for silencing by the let-7 miRNA. In contrast, ALG-1/ALG-2 are required for the miRNA function, but not for the siRNA-directed gene silencing. Finally, a dsRNA containing a bulged miRNA and a perfectly paired siRNA can enter both pathways suggesting that the sorting of small RNAs occurs after that the dsRNA trigger has been processed by Dicer. Thus, our data suggest that the selection of Argonaute proteins is affected by two molecular features: (1) the structure of the small RNA duplex; and (2) the Argonautes specific characteristics.  相似文献   

8.
RNAi plays important roles in many biological processes, including cellular defense against viral infection. Components of the RNAi machinery are widely conserved in plants and animals. In mammals, microRNAs (miRNAs) represent an abundant class of cell encoded small noncoding RNAs that participate in RNAi-mediated gene silencing. Here, findings that HIV-1 replication in cells can be regulated by miRNAs and that HIV-1 infection of cells can alter cellular miRNA expression are reviewed. Lessons learned from and questions outstanding about the complex interactions between HIV-1 and cellular miRNAs are discussed.  相似文献   

9.
10.
11.
    
RNA interference (RNAi) is an evolutionary ancient innate immune response in plants, nematodes, and arthropods providing natural protection against viral infection. Viruses have also gained counter‐defensive measures by producing virulence determinants called viral‐suppressors‐of‐RNAi (VSRs). Interestingly, in spite of dominance of interferon‐based immunity over RNAi in somatic cells of higher vertebrates, recent reports are accumulating in favour of retention of the antiviral nature of RNAi in mammalian cells. The present study focuses on the modulation of intracellular RNAi during infection with rotavirus (RV), an enteric virus with double‐stranded RNA genome. Intriguingly, a time point‐dependent bimodal regulation of RNAi was observed in RV‐infected cells, where short interfering RNA (siRNA)‐based RNAi was rendered non‐functional during early hours of infection only to be reinstated fully beyond that early infection stage. Subsequent investigations revealed RV nonstructural protein 1 to serve as a putative VSR by associating with and triggering degradation of Argonaute2 (AGO2), the prime effector of siRNA‐mediated RNAi, via ubiquitin–proteasome pathway. The proviral significance of AGO2 degradation was further confirmed when ectopic overexpression of AGO2 significantly reduced RV infection. Cumulatively, the current study presents a unique modulation of host RNAi during RV infection, highlighting the importance of antiviral RNAi in mammalian cells.  相似文献   

12.
    
The casein kinase 2 interacting protein‐1 (CKIP‐1) is involved in many cellular functions, including apoptosis, signalling pathways, cell growth, cytoskeleton and bone formation. Its N‐terminal pleckstrin homology (PH) domain is thought to play an important role in membrane localization and controls shuttling of CKIP‐1 between the plasma membrane and nucleus. In this study, the human CKIP‐1 PH domain was purified but problems were encountered with nucleic acid contamination. An S84D/S86D/S88D triple mutant designed to abolish nucleic acid binding was purified and successfully crystallized. Single crystals diffracted to 1.7 Å resolution and belonged to space group P43212 with unit‐cell parameters a = 53.0, b = 53.0, c = 113.8 Å, α = β = γ = 90.0°.  相似文献   

13.
Sequence-specific gene silencing triggered by double-stranded RNA is a fundamental gene regulatory mechanism present in almost all eukaryotes. Argonaute2 (Ago2) is the central protein component of RNA-induced silencing complex (RISC), and resides in cytoplasmic processing bodies (P-bodies). In the present study, we demonstrated one human mutant Ago2 protein containing 6 point mutations (G32W, F128L, R196Q, P458S, T741A, S752G) failed to accumulate in P-bodies. Analysis of the different Ago2 revertants indicates the S752 as a key amino acid for P-body localization of Ago2. The S752 is evolutionary conserved in the Piwi domain of Ago2 homologs from worms, insects, plants and mammals. We further showed the single point mutation S752G interfering the interaction between Ago2 and Dcp1a, a key component of P-bodies.  相似文献   

14.
The core functional machinery of the RNAi pathway is the RNA-induced silencing complex (RISC), wherein Argonaute2 (Ago2) is essential for siRNA-directed endonuclease activity and RNAi/microRNA-mediated gene silencing. Crystallin-αB (CryAB) is a small heat shock protein involved in preventing protein aggregation. We demonstrate that CryAB interacts with the N and C termini of Ago2, not the catalytic site defined by the convergence of the PAZ, MID, and PIWI domains. We further demonstrate significantly reduced Ago2 activity in the absence of CryAB, highlighting a novel role of CryAB in the mammalian RNAi/microRNA pathway. In skeletal muscle of CryAB null mice, we observe a shift in the hypertrophy-atrophy signaling axis toward atrophy under basal conditions. Moreover, loss of CryAB altered the capability of satellite cells to regenerate skeletal muscle. These studies establish that CryAB is necessary for normal Ago2/RISC activity and cellular homeostasis in skeletal muscle.  相似文献   

15.
Argonaute2 binds to a short guide RNA (microRNA or short interfering RNA) and guides RNAs direct RISC to complementary mRNAs that are targets for RISC-mediated gene silencing. Here we identified and characterized Argonaute2 from black tiger shrimp Penaeus monodon (designated as PmAgo2). The full-length cDNA of PmAgo2 contained a 5′ untranslated region (UTR) of 106 bp, an open reading frame (ORF) of 2616 bp and a 3′ UTR of 123 bp. The predicted PmAgo2 protein is 99.4 KDa with the theoretical isoelectric point of 9.54. PmAgo2 shared the highest similarity of amino acid with Marsupenaeus japonicus Argonaute2 and Litopenaeus vannamei Argonaute2, at 69.0% and 68.5%, respectively. Phylogenic analysis showed PmAgo2 clustered with shrimp Argonaute2, and closed to the group of insects. Real-time quantitative PCR showed that PmAgo2 was widely expressed in almost all examined tissues except eyestalk, with high expression in lymph and haemocyte. mRNA expression also revealed that PmAgo2 was significantly up-regulated by Staphylococcus aureus and White Spot Syndrome Virus (WSSV) in hepatopancreas. Furthermore, our study also confirmed that dsRNA and ssRNA homologous poly (I:C) and R848 activated the expression of PmAgo2. The result indicated that PmAgo2 responded to both bacterial infection and viral infection, especially, it may induce an ssRNA-mediated RNAi with other core members of siRNA pathway in black tiger shrimp.  相似文献   

16.
RNA interference (RNAi) is a useful reverse genetics tool for investigation of gene function as well as for practical applications in many fields including medicine and agriculture. RNAi works very well in coleopteran insects including the Colorado potato beetle (CPB), Leptinotarsa decemlineata. We used a cell line (Lepd-SL1) developed from CPB to identify genes that play key roles in RNAi. We screened 50 genes with potential functions in RNAi by exposing Lepd-SL1 cells to dsRNA targeting one of the potential RNAi pathway genes followed by incubation with dsRNA targeting inhibitor of apoptosis (IAP, silencing of this gene induces apoptosis). Out of 50 genes tested, silencing of 29 genes showed an effect on RNAi. Silencing of five genes (Argonaute-1, Argonaute-2a, Argonaute-2b, Aubergine and V-ATPase 16 kDa subunit 1, Vha16) blocked RNAi suggesting that these genes are essential for functioning of RNAi in Lepd-SL1 cells. Interestingly, Argonaute-1 and Aubergine which are known to function in miRNA and piRNA pathways respectively are also critical to siRNA pathway. Using 32P labeled dsRNA, we showed that these miRNA and piRNA Argonautes but not Argonaute-2 are required for processing of dsRNA to siRNA. Transfection of pIZT/V5 constructs containing these five genes into Sf9 cells (the cells where RNAi does not work well) showed that expression of all genes tested, except the Argonaute-2a, improved RNAi in these cells. Results from Vha16 gene silencing and bafilomycin-A1 treatment suggest that endosomal escape plays an important role in dsRNA-mediated RNAi in Lepd-SL1 cells.  相似文献   

17.
Argonaute proteins are the core components of the RNA-induced silencing complex, the central effector of the mammalian RNA interference pathway. In the cytoplasm, they associate with at least two types of cytoplasmic RNA granules; processing bodies and stress granules, which function in mRNA degradation and translational repression, respectively. The significance of Argonaute association with these RNA granules is not entirely clear but it is likely related to their activities within the RNAi pathway. Understanding what regulates targeting of Argonautes to RNA granules may provide clues as to their functions at these organelles. To this end, there are a number of conflicting reports that describe the role of small RNAs in targeting Argonaute proteins in mammalian cells. We employed quantitative microscopic analyses of human Argonaute 2 (hAgo2) mutants to study factors that govern localization of this RNA-binding protein to cytoplasmic RNA granules. We report, for the first time, that hAgo2 is recruited to stress granules as a consequence of its interaction with miRNAs. Moreover, loading of small RNAs onto hAgo2 is not required for its stability, suggesting that a pool of unloaded hAgo2 may exist for extended periods of time in the cytoplasm.  相似文献   

18.
PIWIL1在不同肿瘤细胞中的差异性表达   总被引:2,自引:0,他引:2  
PIWI作为AGO蛋白家族的成员,在睾丸中特异表达,在精子形成过程中扮演着重要角色.已有文献报道,PIWIL2也广泛存在于多种肿瘤中,与肿瘤的发生相关.本文旨在确定PIWL1在不同肿瘤细胞中的表达差异性,进而初步探讨PIWIL1的表达差异与肿瘤发生发展的关系.半定量RT-PCR和Western 印迹检测多种肿瘤细胞中,PIWIL1在mRNA水平及蛋白水平的表达情况,进一步用免疫组化和免疫荧光检测PIWIL1在细胞中的表达及定位.PIWIL1在多种肿瘤细胞中的表达存在差异,其中一些肿瘤细胞中的表达水平较高,包括卵巢癌,前列腺癌,肝癌,胃癌等细胞.对于肿瘤细胞而言,PIWIL1定位于细胞浆中.因此,PIWIL1在多种肿瘤细胞中的表达差异性可能为肿瘤发生发展的研究提供新的线索.  相似文献   

19.
20.
A hot-water extract of adzuki was obtained by boiling beans of adzuki (Vigna angularis). This hot-water extract was fractionated using HP-20 column chromatography. Its distilled water fraction (WEx) was found to stimulate tyrosinase activity in cultured mouse B16 melanoma cells and hair color pigmentation in C3H mice. At concentrations of 1–3 mg/ml, WEx stimulated melanogenesis without inhibiting cell growth. During this effect, WEx activated tyrosinase-inducing activity in the cells, but did not activate tyrosinase, which exists at an intracellular level. In this study, WEx increased cyclic adenosine-3′,5′-monophospate (cAMP) content in the cells and protein kinase A (PKA) activity, and stimulated translocation of cytosolic protein kinase C (PKC) to the membrane-bound PKC. These results suggest that the addition of WEx activates the adenylcyclase and protein kinase pathways and, as a result, stimulates melanogenesis. WEx was found to have pigmentation activity on hair color in C3H mice. It might be useful in anti-graying, protecting human skin from irradiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号