首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
microRNA(miRNA)是一类由20-24个核苷酸组成的小的非编码RNA,通常通过序列互补降解或抑制其靶标基因转录后的翻译过程,从而在转录后水平上调控基因的表达。miRNA在植物基因组中普遍存在,作为一类重要的调节因子参与到植物的生长发育与逆境响应中。目前,已有研究表明高温除了诱导植物编码基因表达发生改变之外,一些非编码RNA的表达也发生了显著改变,其中miRNA作为重要的非编码RNA,参与了植物的高温胁迫响应。对植物miRNA的合成途径,作用机制以及主要功能进行了扼要阐述,重点阐述了高温胁迫下植物miRNA的作用机制,旨在为mi RNA在植物抵抗高温胁迫中的研究与应用提供新的思路。  相似文献   

6.
7.
8.
9.
10.
11.
12.
BAT (brown adipose tissue) is specialized to burn fatty acids for heat generation and energy expenditure to defend against cold and obesity. Accumulating studies have demonstrated that manipulation of BAT activity through various strategies can regulate metabolic homoeostasis and lead to a healthy phenotype. Two classes of ncRNA (non-coding RNA), miRNA and lncRNA (long non-coding RNA), play crucial roles in gene regulation during tissue development and remodelling. In the present review, we summarize recent findings on regulatory role of distinct ncRNAs in brown/beige adipocytes, and discuss how these ncRNA regulatory networks contribute to brown/beige fat development, differentiation and function. We suggest that targeting ncRNAs could be an attractive approach to enhance BAT activity for protecting the body against obesity and its pathological consequences.  相似文献   

13.
Non protein-coding RNAs (ncRNAs) are a research hotspot in bioinformatics. Recent discoveries have revealed new ncRNA families performing a variety of roles, from gene expression regulation to catalytic activities. It is also believed that other families are still to be unveiled. Computational methods developed for protein coding genes often fail when searching for ncRNAs. Noncoding RNAs functionality is often heavily dependent on their secondary structure, which makes gene discovery very different from protein coding RNA genes. This motivated the development of specific methods for ncRNA research. This article reviews the main approaches used to identify ncRNAs and predict secondary structure. During the execution of this work, AML was supported by CAPES fellowship.  相似文献   

14.
RNA can interact with RNA-binding proteins(RBPs), mRNA, or other non-coding RNAs(ncRNAs) to form complex regulatory networks. High-throughput CLIP-seq, degradome-seq, and RNA-RNA interactome sequencing methods represent powerful approaches to identify biologically relevant ncRNA-target and protein-ncRNA interactions. However, assigning ncRNAs to their regulatory target genes or interacting RNA-binding proteins(RBPs) remains technically challenging. Chemical modifications to mRNA also play important roles in regulating gene expression. Investigation of the functional roles of these modifications relies highly on the detection methods used. RNA structure is also critical at nearly every step of the RNA life cycle. In this review, we summarize recent advances and limitations in CLIP technologies and discuss the computational challenges of and bioinformatics tools used for decoding the functions and regulatory networks of ncRNAs. We also summarize methods used to detect RNA modifications and to probe RNA structure.  相似文献   

15.
Form, function, and regulation of ARGONAUTE proteins   总被引:2,自引:0,他引:2  
Mallory A  Vaucheret H 《The Plant cell》2010,22(12):3879-3889
  相似文献   

16.
《遗传学报》2022,49(12):1081-1092
Circular RNAs (circRNAs) are covalently closed single-stranded RNA molecules, which are widespread in eukaryotic cells. As regulatory molecules, circRNAs have various functions, such as regulating gene expression, binding miRNAs or proteins, and being translated into proteins, which are important for cell proliferation and cell differentiation, individual growth and development, as well as many other biological processes. However, compared with that in animal models, studies of circRNAs in plants lags behind and, particularly, the regulatory mechanisms of biogenesis and molecular functions of plant circRNAs remain elusive. Recent studies have shown that circRNAs are wide spread in plants with tissue- or development-specific expression patterns and are responsive to a variety of environmental stresses. In this review, we summarize these advances, focusing on the regulatory mechanisms of biogenesis, molecular and biological functions of circRNAs, and the methods for investigating circRNAs. We also discuss the challenges and the prospects of plant circRNA studies.  相似文献   

17.
18.
19.
Breast cancer (BC) is the most frequently occurring malignancy in women worldwide. Despite the substantial advancement in understanding the molecular mechanisms and management of BC, it remains the leading cause of cancer death in women. One of the main reasons for this obstacle is that we have not been able to find the Achilles heel for the BC as a highly heterogeneous disease. Accumulating evidence has revealed that noncoding RNAs (ncRNAs), play key roles in the development of BC; however, the involving of complex regulatory interactions between the different varieties of ncRNAs in the development of this cancer has been poorly understood. In the recent years, the newly discovered mechanism in the RNA world is “competing endogenous RNA (ceRNA)” which proposes regulatory dialogues between different RNAs, including long ncRNAs (lncRNAs), microRNAs (miRNAs), transcribed pseudogenes, and circular RNAs (circRNAs). In the latest BC research, various studies have revealed that dysregulation of several ceRNA networks (ceRNETs) between these ncRNAs has fundamental roles in establishing the hallmarks of BC development. And it is thought that such a discovery could open a new window for a better understanding of the hidden aspects of breast tumors. Besides, it probably can provide new biomarkers and potential efficient therapeutic targets for BC. This review will discuss the existing body of knowledge regarding the key functions of ceRNETs and then highlights the emerging roles of some recently discovered ceRNETs in several hallmarks of BC. Moreover, we propose for the first time the “ceRnome” as a new term in the present article for RNA research.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号