共查询到20条相似文献,搜索用时 0 毫秒
1.
The nuclear encoded internal transcribed spacer (ITS) region and the plastid encoded trnL-F region were sequenced for 25 populations of Korthalsella, a genus of reduced, monoecious, Old World misletoes. The molecular study confirms the hypothesis that branch shape and cladotaxy (the arrangement of branches with respect to their parent axis) are unreliable indicators of relationship in the genus and demonstrates that many of the taxa previously recognized are not monophyletic. Both gene regions identify three major subgroups within the genus and find lower level relationships within these subgroups highly correlated with geographic distance. An analysis based upon 18S and rbcL sequences identifies Ginalloa as the sister group to Korthalsella, which together with the branching order within the genus, indicates that Korthalsella originated in Papuasia and aids in elucidating evolution of the peculiar inflorescence structure. There are problems associated with species delimitation when evolutionary units are more restricted than morphological lineages, and justification is offered for recognizing only morphologically diagnosable monophyletic lineages as species. Varying substitution rates and differing modes of inheritance in ITS and trnL-F result in complementary utility of the two regions for elucidating infrageneric relationships in Korthalsella. 相似文献
2.
贞琵甲属Agnaptoria是小琵甲亚族Gnaptorinina中第三大属和青藏高原特有类群,已知36种/亚种。本文选取3个线粒体基因(COI; Cytb; 16S rDNA)和1个核基因(28S rDNA-D2)片段,采用最大似然法(Maximum likelihood,ML)构建了该属的系统发育树;运用ASAP(Assemble Species by Automatic Partitioning)、GMYC(Generalized Mixed Yule Coalescent)和PTP(Poisson Tree Processes)3种方法对该属进行了分子物种界定分析。结果表明:综合运用3种分子物种界定方法的界定结果与形态鉴定结果基本吻合。依据形态特征与分子物种界定技术相结合的综合鉴定方法,大大提高了该类群的物种鉴定效率,为该类群未来在系统发育、地理分布格局演化等方面的研究提供了可靠的分子数据。 相似文献
3.
4.
An underground burst of diversity – a new look at the phylogeny and taxonomy of the genus Talpa Linnaeus, 1758 (Mammalia: Talpidae) as revealed by nuclear and mitochondrial genes 下载免费PDF全文
Anna A. Bannikova Elena D. Zemlemerova Paolo Colangelo Mustafa Sözen M. Sevindik Artem A. Kidov Ruslan I. Dzuev Boris Kryštufek Vladimir S. Lebedev 《Zoological Journal of the Linnean Society》2015,175(4):930-948
Using both nuclear and mitochondrial sequences, we demonstrate high genetic differentiation in the genus Talpa and confirm the existence of cryptic species in the Caucasus and Anatolia, namely, T. talyschensis Vereschagin, 1945, T. ognevi Stroganov, 1948, and Talpa ex gr. levantis. Our data support four clades in the genus Talpa that showed strong geographical associations. The ‘europaea’ group includes six species from the western portion of the genus' range (T. europaea, T. occidentalis, T. romana, T. caeca, T. stankovici, and T. levantis s.l.); another three groups are distributed further east: the ‘caucasica’ group (Caucasus), the ‘davidiana’ group (eastern Anatolia and Elburz) and T. altaica (Siberia). The phylogenetic position of T. davidiana was highlighted for the first time. The order of basal branching remains controversial, which can be attributed to rapid diversification events. The molecular time estimates based on nuclear concatenation estimated the basal divergence of the crown Talpa during the latest Miocene. A putative scenario of Talpa radiation and issues of species delimitation are discussed. © 2015 The Linnean Society of London 相似文献
5.
Chenguang Zheng Zhen Ye Xiuxiu Zhu Haiguang Zhang Xue Dong Pingping Chen Wenjun Bu 《Zoologica scripta》2020,49(2):174-186
The genus Potamometra Bianchi, 1896 represents big rheophilic semi-aquatic bugs that typically inhabit middle-altitude mountainous streams. Here, we integrated molecular and morphological data for delimiting species boundaries and understanding the evolutionary history of the genus Potamometra. Twenty-seven complete mitochondrial genomes of Potamometra were sequenced, with samples representing most of the known geographically distributed locations around the Sichuan Basin. The results of different species delimitation methods (ABGD, bPTP, GMYC and BPP) based on the monolocus or multilocus data strongly supported the existence of two cryptic new species (Potamometra anderseni Zheng, Ye & Bu, sp. nov. and Potamometra zhengi Zheng, Ye & Bu, sp. nov.) although more entities were found in the tree-based delimitation methods. The two new species were successfully validated using morphological characters within a detailed taxonomic framework. Phylogenetic analyses supported the reciprocal monophyly of the seven highly node-supported clades, which were matched with the five known species and two new taxa. A novel gene arrangement pattern that two trnF (trnF1 and trnF2) genes separated by an intergenic spacer (IGS) were found in all the species except the sister group of Potamometra berezowskii Bianchi, 1896 and Potamometra linnavuorii Chen, Nieser & Bu, 2016. This gene rearrangement event could be explained by the tandem duplication and random loss (TDRL) model. Our study emphasized that the combination of molecular sequence data, morphological characters and mitochondrial structural information could improve the accuracy of species delimitation. 相似文献
6.
7.
Murillo-A J Ruiz-P E Landrum LR Stuessy TF Barfuss MH 《Molecular phylogenetics and evolution》2012,62(2):764-776
Myrceugenia is a genus endemic to South America with a disjunct distribution: 12 species occurring mainly in central Chile and approximately 25 in southeastern Brazil. Relationships are reconstructed within Myrceugenia from four plastid markers (partial trnK-matK, rpl32-trnL, trnQ-5'rps16 and rpl16) and two ribosomal nuclear regions (ETS and ITS) using maximum parsimony and Bayesian analyses. Relationships inferred previously from morphological data are not completely consistent with those from molecular data. All molecular analyses support the hypothesis that Myrceugenia is monophyletic, except for M. fernadeziana that falls outside the genus. Chilean species and Brazilian species form two separate lineages. Chilean species form three early diverging clades, whereas Brazilian species are a strongly supported monophyletic group in a terminal position. Least average evolutionary divergence, low resolution, short branches, and high species diversity found in the Brazilian clade suggest rapid radiation. Geographical distributions and phylogenetic reconstructions suggest that extant Myrceugenia species arose in northern Chile followed by colonization southward and finally to the Juan Fernández Islands and southeastern Brazil. 相似文献
8.
Fernanda da Cruz Andreia C. Turchetto‐Zolet Nicole Veto Cláudio Augusto Mondin Marcos Sobral Maurício Almerão Rogério Margis 《Botanical journal of the Linnean Society. Linnean Society of London》2013,172(4):532-543
Myrtaceae are one of the most species‐rich families of flowering plants in the Neotropics. They include several complex genera and species; Hexachlamys is one of the complex genera. It has not been recognized as a distinct genus and has been included in Eugenia, based on morphological grounds. Therefore, molecular systematic studies may be useful to understand and to help to solve these relationships. Here, we performed a molecular phylogenetic analysis using plastid and nuclear data in order to check the inclusion of Hexachlamys in Eugenia. Plastid (accD, rpoB, rpoC1, trnH‐psbA) and nuclear (ITS2) sequence data were analysed using Bayesian and maximum parsimony methods. The trees constructed using ITS2 and trnH‐psbA were the best able to resolve the relationships between species and genera, revealing the non‐monophyly of Hexachlamys. The molecular phylogenetic analyses were in agreement with previous morphological revisions that have included Hexachlamys in Eugenia. These results reinforce the importance of uniting knowledge and strategies to understand better issues of delimitation of genera and species in groups of plants with taxonomic problems. © 2013 The Linnean Society of London, Botanical Journal of the Linnean Society, 2013, 172 , 532–543. 相似文献
9.
SUSANA SCHÖNHUTH IGNACIO DOADRIO 《Biological journal of the Linnean Society. Linnean Society of London》2003,80(2):323-337
We conducted phylogenetic analyses based on complete mitochondrial cytochrome b gene sequences among southern and central Mexican cyprinid species, included in the genera Notropis and Hybopsis. In addition 15 northern species of the genera Notropis and Hybopsis were included in the analyses in order to place the Mexican species into a larger phylogenetic framework. The phylogenetic relationships supported the existence of five major clades: (1) including species of the subgenus Alburnops of the genus Notropis plus N. shumardi; (2) species of the subgenus Notropis; (3) species of the genus Hybopsis; (4) species of the N. texanus + N. volucellus species group of the genus Notropis; (5) Mexican endemic species of the genus Notropis plus the genus Yuriria. Previous phylogenetic inferences based on morphological characters resolved the Mexican minnows analysed as N. sallaei, N. calientis, N. boucardi and Y. alta, non‐monophyletic. According to our cytochrome b evidence all Mexican minnows of the genera Notropis and Yuriria formed a monophyletic group with respect to the northern species of the genera Notropis and Hybopsis. Within the Mexican clade, three well‐supported clades were identified: the first included the closely related species N. moralesi and N. boucardi, which occur in three independent drainages of south Mexico; the second consisted of two different lineages, N. imeldae and an undescribed species of Notropis, inhabiting two independent drainages of south Mexico; the third comprised two central Mexican Notropis species (N. calientis and N. sallaei) and the Y. alta populations. Based on this study and pending a more extensive taxonomic revision of the genus Notropis, we adopt the conservative criterion of considering all Notropis species from southern and central Mexico examined, including Y. alta, as belonging to the genus Notropis. © 2003 The Linnean Society of London, Biological Journal of the Linnean Society, 2003, 80 , 323–337. 相似文献
10.
MAURICIO A. CISTERNAS GERARDO A. SALAZAR GABRIELA VERDUGO PATRICIO NOVOA XIMENA CALDERÓN MARÍA A. NEGRITTO 《Botanical journal of the Linnean Society. Linnean Society of London》2012,168(3):258-277
The phylogenetic relationships of subtribe Chloraeinae, a group of terrestrial orchids endemic to southern South America, have not been satisfactorily investigated. A previous molecular phylogenetic analysis based on plastid DNA supported the monophyly of Chloraeinae and Gavilea, but showed that Chloraea is non‐monophyletic and that the sole species of Bipinnula analysed is sister to Geoblasta. However, that analysis included only 18 of the 73 species belonging to this subtribe. Here, the phylogenetic relationships of Chloraeinae were assessed by analysing aproximately 7500 bp of nucleotide sequences from nuclear ribosomal internal transcribed spacer (ITS) and plastid DNA (rbcL, matK, trnL‐trnF, rpoB‐trnC) for 42 species representing all four currently accepted genera of Chloraeinae and appropriate outgroups. Nuclear and plastid data were analysed separately and in combination using two different methods, namely parsimony and Bayesian inference. Our analyses support the monophyly of Chloraeinae and their inclusion in an expanded concept of Cranichideae, but none of the genera of Chloraeinae that includes more than one species is monophyletic. Gavilea and Bipinnula are paraphyletic, with Chloraea chica nested in Gavilea and Geoblasta penicillata in Bipinnula. As currently delimited, Chloraea is polyphyletic. The taxonomic changes proposed recently are for the most part not justifiable on phylogenetic grounds, except for recognition of the monotypic genus Correorchis. The lack of resolution for the relationships among species of ‘core’Chloraea suggests a relatively recent diversification of this group. The current generic classification is in need or revision, but additional study is advisable before carrying out further taxonomic changes. © 2012 The Linnean Society of London, Botanical Journal of the Linnean Society, 2012, 168 , 258–277. 相似文献
11.
Phylogenetic relationships within Plantago (Plantaginaceae): evidence from nuclear ribosomal ITS and plastid trnL-F sequence data 总被引:1,自引:0,他引:1
NINA RØNSTED MARK W. CHASE DIRK C. ALBACH MARIA ANGELICA BELLO 《Botanical journal of the Linnean Society. Linnean Society of London》2002,139(4):323-338
A molecular phylogenetic study of Plantago L. (Plantaginaceae) analysed nucleotide variation in the internal transcribed spacers (ITS) of nuclear ribosomal and plastid trnL-F regions. Included are 57 Plantago species, with two Aragoa species as the ingroup and three Veronica species as the outgroup. Phylogenetic analysis using maximum parsimony identified five major clades, corresponding to the taxonomic groups Plantago subgenera Plantago, Coronopus, Psyllium, Littorella and Bougueria . Aragoa is sister to genus Plantago . Plantago subgenus Littorella is sister to the other subgenera of Plantago . The results are in general correlated with a morphological phylogenetic study and iridoid glucoside patterns, but Plantago subgenus Albicans is paraphyletic and should be included in Plantago subgenus Psyllium sensu lato to obtain a monophyletic clade with six sections. Plantago section Hymenopsyllium is more closely related to section Gnaphaloides than to section Albicans . Plantago subgenus Bougueria is sister to subgenus Psyllium s.l. section Coronopus in Plantago subgenus Coronopus is subdivided in two series. Only some of the sections can be resolved into series. DNA variation within genus Plantago is high, a result that would not have been predicted on the basis of morphology, which is relatively stereotyped. If we calibrate a molecular clock based on the divergence of P. stauntoni , endemic to New Amsterdam in the southern Indian Ocean, we calculate the time of the split between Plantago and Aragoa to be 7.1 million years ago, which is congruent with the fossil record. © 2002 The Linnean Society of London, Botanical Journal of the Linnean Society , 2002, 139 , 323–338. 相似文献
12.
Andrea G. Reutemann Rodrigo E. Ardissone María Gabriela López Sebastián Elias Muchut Ilsi Boldrini Abelardo Carlos Vegetti 《分类学与生物多样性》2018,16(5):441-452
Previous molecular phylogenetic analyses of the family Cyperaceae based on rbcL sequences showed Bulbostylis as paraphyletic, with B. atrosanguinea and B. hispidula forming a clade with Nemum spadiceum. On the contrary, phylogenetic analyses of the tribe Abildgaardieae based on nuclear (ITS ribosomal region) and plastid sequences (trnL-F region) showed Bulbostylis as monophyletic, although they only incorporated four species of Bulbostylis and none of Nemum. In this work, we presented a phylogenetic hypothesis of Bulbostylis based on a comprehensive sampling, including species from different continents for the first time. New sequences of Abildgaardia, Crosslandia, Fimbristylis, and Nemum were included to test the monophyly of Bulbostylis. In total, 84 sequences of both ITS and trnL regions were generated. Analyses were performed using Bayesian inference, maximum likelihood, and parsimony. Ancestral state reconstruction was performed using ML, MCMC, and parsimony methods. In all analyses, Bulbostylis resulted paraphyletic as Nemum atracuminatum is nested within it. Most American species of Bulbostylis grouped together, but relationships amongst them appeared poorly resolved. Ancestral state reconstructions of native distribution suggest an African ancestor of Bulbostylis, with at least three introduction independent events of the species in America. Morphological diagnostic characters such as the ‘style base permanence or detachment from the ripe achene’, and the ‘micromorphological patterns of the achene surface’ are homoplastic in this phylogenetic context, and therefore unsuitable to propose infrageneric groupings within the Bulbostylis. 相似文献
13.
Integrative taxonomy of the primitively segmented spider genus Ganthela (Araneae: Mesothelae: Liphistiidae): DNA barcoding gap agrees with morphology 下载免费PDF全文
Xin Xu Fengxiang Liu Jian Chen Daiqin Li Matjaž Kuntner 《Zoological Journal of the Linnean Society》2015,175(2):288-306
Species delimitation is difficult for taxa in which the morphological characters are poorly known because of the rarity of adult morphs or sexes, and in cryptic species. In primitively segmented spiders, family Liphistiidae, males are often unknown, and female genital morphology – usually species‐specific in spiders – exhibits considerable intraspecific variation. Here, we report on an integrative taxonomic study of the liphistiid genus Ganthela Xu & Kuntner, 2015, endemic to south‐east China, where males are only available for two of the seven morphological species (two known and five undescribed). We obtained DNA barcodes (cytochrome c oxidase subunit I gene, COI) for 51 newly collected specimens of six morphological species and analysed them using five species‐delimitation methods: DNA barcoding gap, species delimitation plugin [P ID(Liberal)], automatic barcode gap discovery (ABGD), generalized mixed Yule‐coalescent model (GMYC), and statistical parsimony (SP). Whereas the first three agreed with the morphology, GMYC and SP indicate several additional species. We used the consensus results to delimit and diagnose six Ganthela species, which in addition to the type species Ganthela yundingensis Xu, 2015, completes the revision of the genus. Although multi‐locus phylogenetic approaches may be needed for complex taxonomic delimitations, our results indicate that even single‐locus analyses based on the COI barcodes, if integrated with morphological and geographical data, may provide sufficiently reliable species delimitation. © 2015 The Linnean Society of London 相似文献
14.
Phylogenetic relationships within Adiaphanida (phylum Platyhelminthes) and the status of the crustacean‐parasitic genus Genostoma 下载免费PDF全文
The existence of the platyhelminth clade Adiaphanida—an assemblage comprising the well‐studied order Tricladida as well as two lesser known taxa, Prolecithophora and the obligate parasitic Fecampiida—is among the more surprising results of flatworm molecular systematics. Each of these three clades is itself largely well‐defined from a morphological point of view, although Adiaphanida at large, despite its strong support in molecular phylogenetic analyses, lacks known morphological synapomorphies. However, one taxon, the genus Genostoma, a parasite of the leptostracan crustacean Nebalia, rests uneasily within its current classification within the fecampiid family Genostomatidae; ultrastructural investigations on this taxon have uncovered a spermatogenesis reminiscent of Kalyptorhynchia, and a dorsal syncytium resembling the neodermatan tegument. Here, we provide molecular sequence data (nearly complete 18S and 28S rRNA) from a representative of Genostoma, with which we test hypotheses on the phylogenetic position of this taxon within Platyhelminthes, expanding upon a recently published phylum‐wide analysis, and applying novel alignment algorithms and substitution models. These analyses unequivocally position Genostoma as the sister group of Prolecithophora. However, even in taxon‐rich analyses, support for the position of the root of Adiaphanida is lacking, highlighting the need for new data types to study the phylogeny of this clade. Interestingly, our analyses also do not recover the monophyly of several taxa previously proposed, notably Continenticola within Tricladida and Protomonotresidae within Prolecithophora. In light of this phylogeny and the distinctive morphology (especially, spermatogenesis) of Genostoma, we advocate for a redefinition of the family Genostomatidae, outside of both Fecampiida and Prolecithophora, to encompass the members of this unique genus of parasites. Within Fecampiida, the family Piscinquilinidae fam. nov. is erected to accommodate the vertebrate‐parasitic Piscinquilinus, formerly Genostomatidae. 相似文献
15.
Using geometric morphometrics for integrative taxonomy: an examination of head shapes of milksnakes (genus Lampropeltis) 下载免费PDF全文
Sara Ruane 《Zoological Journal of the Linnean Society》2015,174(2):394-413
Species discovery and identification has long relied on traditional morphometric analyses, although molecular methods for species delimitation are becoming increasing popular and important. Despite an increase in studies that rely solely on molecular data to differentiate between species, additional evidence that supports genealogically‐based species delimitation is desirable at least for field and museum identification of species and is part of an integrative approach to taxonomy. The present study uses geometric morphometric (GM) analyses to examine six species of milksnake (genus Lampropeltis) that have recently been delimited based on multilocus data in a coalescent framework. Landmarks are plotted onto the dorsal view of 487 specimens and canonical variate analysis (CVA) is used to determine whether the differences in head shape of these six species can be used to correctly classify specimens. For five of the six species, CVA accurately classifies individuals >70% of the time. The present study illustrates that, although GM‐based analyses may not correctly differentiate between species 100% of the time, GM methods can be useful for detecting shape differences between species and help to corroborate species delimitation. © 2015 The Linnean Society of London 相似文献
16.
Inaccurate systematics confound our ability to determine evolutionary processes that have led to the diversification of many taxa. The North American freshwater mussel tribe Lampsilini is one of the better-studied groups in Unionidae, however, many supraspecific relationships between lampsiline genera remain unresolved. Two genera previously hypothesized to be non-monophyletic that have been largely overlooked are Leptodea and Potamilus. We set out to resolve supraspecific relationships in Lampsilini and test the monophyly of Leptodea and Potamilus by integrating molecular, morphological, and life history data. Our molecular matrix consisted of four loci: cytochrome c oxidase subunit 1 (CO1), NADH dehydrogenase subunit 1 (ND1), internal transcribed spacer 1 (ITS1), and 28S ribosomal RNA. Secondly, we performed both traditional and Fourier shape morphometric analyses to evaluate morphological differences and finally, we compared our results with available life history data. Molecular data supported the paraphyly of both Leptodea and Potamilus, but nodal support was insufficient to make any conclusions regarding generic-level assignments at this time. In contrast, inference from our integrative taxonomic assessment depicts significant support for the recognition of a new species, Potamilus streckersoni sp. nov., the Brazos Heelsplitter. Our data show clear separation of three taxonomic entities in the P. ohiensis species complex: P. amphichaenus, P. ohiensis, and P. streckersoni sp. nov.; all molecularly, geographically, and morphologically diagnosable. Our findings have profound implications for unionid taxonomy and will aid stakeholders in establishing effective conservation and management strategies.http://www.zoobank.org/urn:lsid:zoobank.org:pub:502647C0-418B-4CC4-85A8-BD89FC3F674F 相似文献
17.
EWAN GAGE PAUL WILKIN MARK W. CHASE JULIE HAWKINS 《Botanical journal of the Linnean Society. Linnean Society of London》2011,166(2):149-162
The phylogenetics of Sternbergia (Amaryllidaceae) were studied using DNA sequences of the plastid ndhF and matK genes and nuclear internal transcribed spacer (ITS) ribosomal region for 38, 37 and 32 ingroup and outgroup accessions, respectively. All members of Sternbergia were represented by at least one accession, except S. minoica and S. schubertii, with additional taxa from Narcissus and Pancratium serving as principal outgroups. Sternbergia was resolved and supported as sister to Narcissus and composed of two primary subclades: S. colchiciflora sister to S. vernalis, S. candida and S. clusiana, with this clade in turn sister to S. lutea and its allies in both Bayesian and bootstrap analyses. A clear relationship between the two vernal flowering members of the genus was recovered, supporting the hypothesis of a single origin of vernal flowering in Sternbergia. However, in the S. lutea complex, the DNA markers examined did not offer sufficient resolving power to separate taxa, providing some support for the idea that S. sicula and S. greuteriana are conspecific with S. lutea. © 2011 The Linnean Society of London, Botanical Journal of the Linnean Society, 2011, 166 , 149–162. 相似文献
18.
The first phylogenetic hypothesis for the southern African endemic genus Tulbaghia (Amaryllidaceae,Allioideae) based on plastid and nuclear DNA sequences 下载免费PDF全文
Gary I. Stafford Mette J. Wikkelsø Louise Nancke Anna K. Jäger Michael Möller Nina Rønsted 《Botanical journal of the Linnean Society. Linnean Society of London》2016,181(2):156-170
19.
20.
Species boundaries and phylogenetic relationships within the green algal genus Codium (Bryopsidales) based on plastid DNA sequences 总被引:1,自引:0,他引:1
Verbruggen H Leliaert F Maggs CA Shimada S Schils T Provan J Booth D Murphy S De Clerck O Littler DS Littler MM Coppejans E 《Molecular phylogenetics and evolution》2007,44(1):240-254
Despite the potential model role of the green algal genus Codium for studies of marine speciation and evolution, there have been difficulties with species delimitation and a molecular phylogenetic framework was lacking. In the present study, 74 evolutionarily significant units (ESUs) are delimited using 227 rbcL exon 1 sequences obtained from specimens collected throughout the genus' range. Several morpho-species were shown to be poorly defined, with some clearly in need of lumping and others containing pseudo-cryptic diversity. A phylogenetic hypothesis of 72 Codium ESUs is inferred from rbcL exon 1 and rps3-rpl16 sequence data using a conventional nucleotide substitution model (GTR+Gamma+I), a codon position model and a covariotide (covarion) model, and the fit of a multitude of substitution models and alignment partitioning strategies to the sequence data is reported. Molecular clock tree rooting was carried out because outgroup rooting was probably affected by phylogenetic bias. Several aspects of the evolution of morphological features of Codium are discussed and the inferred phylogenetic hypothesis is used as a framework to study the biogeography of the genus, both at a global scale and within the Indian Ocean. 相似文献