首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Wheat preharvest sprouting (PHS) occurs when seed germinates on the plant before harvest resulting in reduced grain quality. In wheat, PHS susceptibility is correlated with low levels of seed dormancy. A previous mapping of quantitative trait loci (QTL) revealed a major PHS/seed dormancy QTL, QPhs.cnl-2B.1, located on wheat chromosome 2B. A comparative genetic study with the related grass species rice (Oryza sativa L.) and Brachypodium distachyon at the homologous region to the QPhs.cnl-2B.1 interval was used to identify the candidate genes for marker development and subsequent fine mapping. Expressed sequence tags and a comparative mapping were used to design 278 primer pairs, of which 22 produced polymorphic amplicons that mapped to the group 2 chromosomes. Fourteen mapped to chromosome 2B, and ten were located in the QTL interval. A comparative analysis revealed good macrocollinearity between the PHS interval and 3 million base pair (mb) region on rice chromosomes 7 and 3, and a 2.7-mb region on Brachypodium Bd1. The comparative intervals in rice were found to contain three previously identified rice seed dormancy QTL. Further analyses of the interval in rice identified genes that are known to play a role in seed dormancy, including a homologue for the putative Arabidopsis ABA receptor ABAR/GUN5. Additional candidate genes involved in calcium signaling were identified and were placed in a functional protein association network that includes additional proteins critical for ABA signaling and germination. This study provides promising candidate genes for seed dormancy in both wheat and rice as well as excellent molecular markers for further comparative and fine mapping.  相似文献   

3.
Seed dormancy is an important factor regulating preharvest sprouting (PHS) but is a complex trait for genetic analysis. We previously identified a major quantitative trait locus (QTL) controlling seed dormancy on the long arm of chromosome 4A (4AL) in common wheat. To transfer the QTL from the dormant lines 'OS21-5' and 'Leader' into the Japanese elite variety 'Haruyokoi', which has an insufficient level of seed dormancy, backcrossing was carried out through marker-assisted selection (MAS) using PCR-based codominant markers. Nineteen BC5F2 plants with homozygous alleles of 'OS21-5' or 'Haruyokoi' were developed and evaluated for seed dormancy under greenhouse conditions. The seeds harvested from plants with 'OS21-5' alleles showed a clearly high level of dormancy compared with seeds from plants with 'Haruyokoi' alleles. Additionally, the dormancy phenotype of BC3F3 seeds harvested from 128 BC3F2 plants with homozygous alleles of 'Leader' or 'Haruyokoi' showed a clear difference between these alleles. The QTL on 4AL confers a major gene, Phs1, which was mapped within a 2.6 cM region. The backcrossed lines developed in this study can be important sources for improving PHS resistance in Japanese wheat and for analyzing the mechanism of seed dormancy. MAS was useful for the development of near-isogenic lines in this complex trait, to facilitate the molecular dissection of genetic factors.  相似文献   

4.
Significant achievements have been made in breeding programs for the heavy-panicle-type(HPT)rice(Oryza sativa) in Southwest China. The HPT varieties now exhibit excellent lodging resistance,allowing them to overcome the greater pressures caused by heavy panicles. However, the genetic mechanism of this lodging resistance remains elusive. Here, we isolated a major quantitative trait locus, Panicle Neck Diameter 1(PND1), andidentified the causal gene as GRAIN NUMBER 1 A/CYTOKININ OXIDASE 2(Gn1 A/Os...  相似文献   

5.
水稻(Oryza sativa)籽粒大小是影响其产量的关键农艺性状, 克隆并研究水稻籽粒大小相关基因对于提高水稻产量具有重要意义。为深入探究水稻籽粒大小的调控机制, 通过EMS诱变品种宽叶粳(KYJ), 分离了一系列水稻籽粒大小改变的突变体, 其中smg12表现为籽粒变小, 株高变矮, 一级枝梗数和二级枝梗数减少。遗传分析表明, 该小粒突变体受隐性单基因控制。细胞学分析显示, 该突变体颖壳纵向细胞长度显著变短, 表明SMG12主要影响细胞扩展。利用Mutmap方法对候选基因进行克隆, 筛选出SMG12的候选基因OsBRI1, 该基因编码油菜素内酯受体激酶。OsBRI1外显子上的第2 074个碱基发生了由C到T的置换, 产生非同义突变, 使得该位置编码的脯氨酸变为丝氨酸, 从而影响OsBRI1的功能。综上, 该研究鉴定了OsBRI1基因的1个新等位变异, 揭示了油菜素内酯途径调控水稻籽粒大小的细胞和分子基础。  相似文献   

6.
刘玉良  郑术芝 《植物学报》2017,52(1):113-121
水稻具有悠久的栽培历史,是重要的粮食作物,养育了1/3的世界人口。现代栽培稻(Oryza sativa)由野生稻(O.rufipogon)驯化而来,产量是驯化筛选的关键性状之一。株型、穗型和种子大小是决定水稻产量的重要性状,这些性状在水稻栽培过程中均受到了定向筛选。该文以水稻产量性状为核心,综述了株型、穗型和种子大小等性状的驯化分子机理研究进展,讨论了水稻产量驯化研究中存在的问题,展望了驯化性状和相关基因的研究前景,以期为水稻产量相关性状的驯化机理研究和水稻育种工作提供有价值的线索。  相似文献   

7.
Resistance to pre-harvest sprouting (PHS) is an important objective for the genetic improvement of many cereal crops, including wheat. Resistance, or susceptibility, to PHS is mainly influenced by seed dormancy, a complex trait. Reduced seed dormancy is the most important aspect of seed germination on a spike prior to harvesting, but it is influenced by various environmental factors including light, temperature and abiotic stresses. The basic genetic framework of seed dormancy depends on the antagonistic action of abscisic acid (ABA) and gibberellic acid (GA) to promote dormancy and germination. Recent studies have revealed a role for epigenetic changes, predominantly histone modifications, in controlling seed dormancy. To investigate the role of DNA methylation in seed dormancy, we explored the role of ARGONAUTE4_9 class genes in seed development and dormancy in wheat. Our results indicate that the two wheat AGO4_9 class genes i.e. AGO802 and AGO804 map to chromosomes 3S and 1S are preferentially expressed in the embryos of developing seeds. Differential expressions of AGO802-B in the embryos of PHS resistant and susceptible varieties also relates with DNA polymorphism in various wheat varieties due to an insertion of a SINE-like element into this gene. DNA methylation patterns of the embryonic tissue from six PHS resistant and susceptible varieties demonstrate a correlation with this polymorphism. These results suggest a possible role for AGO802-B in seed dormancy and PHS resistance through the modulation of DNA methylation.  相似文献   

8.
维生素E (VE)是稻米营养品质的重要指标。水稻(Oryza sativa)是我国种植最广泛的粮食作物, 增加其籽粒的VE含量是实现国民营养强化的一条便捷有效的途径。该研究以籼稻华占(HZ)为父本, 粳稻热研2号(Nekken2)为母本, 构建120个重组自交系(RILs)群体。采用高效液相色谱法(HPLC)对RILs群体的VE各组分含量进行测定, 并基于构建的高密度分子遗传图谱进行QTL定位, 谱系分析后挖掘到122个VE总量和分量相关QTLs, 分布在12条染色体上。其中qT3α/to2-1的LOD值高达10.32, qT3α2-1的LOD值高达9.91, 另有多个控制各异构体含量的主效QTLs, 且区间内包含OsGGR1OsGGR2OsTCOsγTMT等VE生物合成基因。通过qRT-PCR检测亲本中VE合成基因的表达量, 发现在华占中候选基因的表达量均极显著高于热研2号, 推测这些基因的高表达是华占生育酚及生育三烯酚含量高于热研2号的原因。研究挖掘到的QTL数目较多, LOD值也较大, 为进一步筛选和培育高VE含量的水稻新品种奠定了分子基础, 同时为揭示水稻VE生物合成的分子调控机制提供了重要基因资源。  相似文献   

9.
水稻(Oryza sativa)抽穗期是决定产量和品质的重要性状,在育种、制种及引种驯化过程中发挥重要作用。将热研2号(O. sativa subsp. japonica cv.‘Nekken2’)和华占(O. sativa subsp. indica cv.‘HZ’)杂交获得F1代,经连续多代自交得到120个重组自交系(RILs)群体。在常规水肥管理条件下,对120个RILs株系的抽穗时间进行统计分析。利用已构建好的高密度遗传图谱,对水稻抽穗期相关性状进行QTL定位分析,结果共检测到11个QTLs,分别位于第1、3、4、5、6、8和12号染色体上,其中1个LOD值高达5.75。通过分析QTLs区间内的候选基因,筛选出可能影响两亲本抽穗期的相关基因,并利用实时定量PCR进行基因表达量分析,发现LOC_Os03g03070、LOC_Os03g50310、LOC_Os03g55389、LOC_Os04g55510、LOC_Os08g07740和LOC_Os08g01670共6个基因在双亲间的表达量差异显著,其中LOC_Os03g50310在Nekken2中的表达量比H...  相似文献   

10.
叶色突变体往往伴随着叶绿素含量变化及叶绿体结构异常,是研究叶绿体发育与光合作用相关基因功能的重要材料。该研究通过甲基磺酸乙酯(EMS)诱变籼稻(Oryzasativasubsp.indica)品种华占(HZ)获得黄绿叶突变体,将其命名为ygl18 (yellow-green leaf 18)。与野生型相比,黄绿叶突变体ygl18自三叶期起叶片开始变黄且程度不断加深,同时伴随着光合速率与叶绿素含量下降,且结实率、千粒重及有效穗数均显著降低。透射电镜观察结果显示, ygl18的叶绿体结构紊乱,基质片层疏松,发育受到抑制,与叶片出现黄绿色表型一致。遗传分析表明, ygl18突变性状受1对隐性等位核基因控制,这对等位基因位于水稻第3号染色体长臂标记InDel2和InDel3之间115.2 kb范围内。进一步研究发现该突变体表型是编码铁氧还蛋白FdC2的基因LOC_Os03g48040的5’UTR发生突变所致。通过CRISPR转基因实验验证了该基因对表型的控制作用。研究结果揭示了叶色调控网络的遗传基础,可为今后选育高光效水稻品种提供新线索。  相似文献   

11.
空育131粳稻(Oryza sativa ssp.japonica)品种因具有早熟质优、丰产稳产及耐低温冷害等优点成为黑龙江省的第一大主栽品种。为了挽救其近年来由于感染稻瘟病而从生产上退出的局面,通过对主栽品种空育131基因组的重测序和扫描,明确其遗缺多个优良抗稻瘟病Pi基因(Pi2、Pi9、Pi36、Pi5-1、Pb1、Pid3、Pi25、Pikh、Pi1、Pik-m、Pik-p和Pi56t等),并通过回交育种的方法,将MP水稻材料中的Pb1广谱抗瘟基因片段导入空育131染色体组中。该基因组的再构建过程尽可能不改变原品种的其它优良性状,并利用控制目标导入片段长短的策略来缩短Pb1位点附近的连锁累赘。在目前得到的导入系中,目标导入片段长约700 kb,背景回复率为99.38%。表型鉴定结果显示,该导入系可能和亲本MP水稻材料发挥同等的抗瘟能力。  相似文献   

12.
Grain size and leaf angle are key agronomic traits that determine final yields in rice. However, the underlying molecular mechanisms are not well understood. Here we demonstrate that the Oryza sativa Mitogen Activated Protein Kinase Kinase Kinase OsMKKK70 regulates grain size and leaf angle in rice. Overexpressing OsMKKK70 caused plants to produce longer seeds. The osmkkk62/70 double mutant and the osmkkk55/62/70 triple mutant displayed significantly smaller seeds and a more erect leaf angle compared to the wild type, indicating that OsMKKK70 functions redundantly with its homologs OsMKKK62 and OsMKKK55. Biochemical analysis demonstrated that OsMKKK70 is an active kinase and that OsMKKK70 interacts with OsMKK4 and promotes OsMAPK6 phosphorylation. In addition, the osmkkk62/70 double mutant showed reduced sensitivity to Brassinosteroids (BRs). Finally, overexpressing constitutively active OsMKK4, OsMAPK6, and OsWRKY53 can partially complement the smaller seed size, erect leaf, and BR hyposensitivity of the osmkkk62/70 double mutant. Taken together, these findings suggest that OsMKKK70 might regulate grain size and leaf angle in rice by activating OsMAPK6 and that OsMKKK70, OsMKK4, OsMAPK6, and OsWRKY53 function in a common signaling pathway that controls grain shape and leaf angle.  相似文献   

13.
14.
Rice blast and bacterial blight are important diseases of rice (Oryza sativa) caused by the fungus Magnaporthe oryzae and the bacterium Xanthomonas oryzae pv. oryzae (Xoo), respectively. Breeding rice varieties for broad-spectrum resistance is considered the most effective and sustainable approach to controlling both diseases. Although dominant resistance genes have been extensively used in rice breeding and production, generating disease-resistant varieties by altering susceptibility (S) genes that facilitate pathogen compatibility remains unexplored. Here, using CRISPR/Cas9 technology, we generated loss-of-function mutants of the S genes Pi21 and Bsr-d1 and showed that they had increased resistance to M. oryzae. We also generated a knockout mutant of the S gene Xa5 that showed increased resistance to Xoo. Remarkably, a triple mutant of all three S genes had significantly enhanced resistance to both M. oryzae and Xoo. Moreover, the triple mutant was comparable to the wild type in regard to key agronomic traits, including plant height, effective panicle number per plant, grain number per panicle, seed setting rate, and thousand-grain weight. These results demonstrate that the simultaneous editing of multiple S genes is a powerful strategy for generating new rice varieties with broad-spectrum resistance.  相似文献   

15.
16.
Wheat pre-harvest sprouting (PHS) is an undesired trait, which often reduces yield and downgrades end-use quality of grain. Viviparous-1B (Vp-1B), a regulator gene located on chromosome 3B, has previously been proved to be involved in inducing grain dormancy of wheat. In order to obtain some new or useful alleles associated with PHS tolerance of white-grained wheat, we developed a gene-specific marker (Vp1-b2) to identify allelic variations of Vp-1B using denaturing PAGE in micro-core collections of Chinese wheat and landraces. As a main component observed genetic variation for PHS, seed dormancy evaluated by germination index (GI) was determined at dough-yellow ripening stage in the present study. The results indicated that six alleles of Vp-1B, in our study, were discovered among 276 Chinese wheat varieties. Of these alleles, two variants were validated to be novel alleles and designated as Vp-1Be and Vp-1Bf, respectively. By investigating the association between allelic variations of Vp-1B and seed dormancy, we found allele of Vp-1Ba always inclined to weak seed dormancy and susceptibility to PHS. Up to 62.2% genotypes carrying the allele had high GI value with a range of 0.51–1.00, only 14.4% genotypes had low GI value under 0.30. On the contrary, other variants such as Vp-1Bb, Vp-1Bc, Vp-1Bd, Vp-1Be and Vp-1Bf mostly occurred in varieties with higher PHS tolerance, which average of GI values were 0.204, 0.227, 0.296, 0.256 and 0.186, respectively. In Chinese wheat germplasms, Vp-1Ba and Vp-1Bc showed the most widespread distribution followed by Vp-1Bb; other alleles fell into less used varieties. Our research confirmed rich allelic variation of Vp-1B occurred in micro-core collections of Chinese wheat and landraces, which may be useful for improving PHS tolerance as breeding parents.  相似文献   

17.
Grain size is determined by the size and number of cells in the grain. The regulation of grain size is crucial for improving crop yield; however, the genes and molecular mechanisms that control grain size remain elusive. Here, we report that a member of the detoxification efflux carrier /Multidrug and Toxic Compound Extrusion (DTX/MATE) family transporters, BIG RICE GRAIN 1 (BIRG1), negatively influences grain size in rice (Oryza sativa L.). BIRG1 is highly expressed in reproductive organs and roots. In birg1 grain, the outer parenchyma layer cells of spikelet hulls are larger than in wild-type (WT) grains, but the cell number is unaltered. When expressed in Xenopus laevis oocytes, BIRG1 exhibits chloride efflux activity. Consistent with this role of BIRG1, the birg1 mutant shows reduced tolerance to salt stress at a toxic chloride level. Moreover, grains from birg1 plants contain a higher level of chloride than those of WT plants when grown under normal paddy field conditions, and the roots of birg1 accumulate more chloride than those of WT under saline conditions. Collectively, the data suggest that BIRG1 in rice functions as a chloride efflux transporter that is involved in mediating grain size and salt tolerance by controlling chloride homeostasis.  相似文献   

18.
云南疣粒野生稻稻瘟病抗性   总被引:1,自引:0,他引:1  
野生稻(Oryza rufipogo)保存有许多栽培稻(O. sativa)不具备或已经消失的优异基因资源, 是扩大栽培稻遗传背景、改良产量与品质、提高抗病虫害及抗逆境能力的重要基因库。疣粒野生稻(O. meyeriana)是中国3种野生稻资源之一, 主要分布在云南。为进一步了解其稻瘟病抗性, 首先利用来自不同稻作区的稻瘟病菌株, 通过注射接种法对疣粒野生稻进行系统的稻瘟病抗性鉴定, 发现疣粒野生稻对接种的所有稻瘟病菌株都感病。进一步采用3'/5' RACE方法, 从疣粒野生稻中克隆了水稻同源基因Pid2Pid3, 并构建过表达转基因株系对基因功能进行了研究。结果表明, Pid2Pid3与疣粒野生稻中同源基因间在DNA和氨基酸水平上有较大的序列差异, 过表达转基因的日本晴植株对稻瘟病菌的敏感性与对照相似。推测疣粒野生稻在自然接种条件下, 表现出的抗稻瘟病表型很可能是其旱生叶片结构特征形成了对稻瘟病菌侵染的天然屏障。对控制疣粒野生稻这一类性状基因资源的挖掘和利用, 有利于优良抗性水稻品种的培育。研究结果为疣粒野生稻的研究利用提供了新信息和新思路。  相似文献   

19.
20.
The crop seeds have been a staple food for humans, and seed yield is important for sustaining agriculture development and enhancing human adaptability to food risks. The phenomenon of pre-harvest sprouting (PHS), caused by seed dormancy deficiency, and the phenomenon of low seedling emergence caused by seed deep dormancy, will lead to a reduction in agricultural production. Therefore, it is particularly important to understand the regulation mechanisms of seed dormancy. There are many studies on the regulation of seed dormancy in rice, but there are few studies on the regulation of seed dormancy in other crops, and the research on its mechanism is not thorough enough. In this paper, we comprehensively summarize the regulation mechanisms of cereal seed dormancy, including rice, barley and wheat, discussing the integral mechanism of seed dormancy. This information should provide new insights for developing versatile cultivated lines to improve crop yield and economic benefits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号