首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
We have previously reported that spectrin increases dramatically in amount and is assembled into the cytoskeleton in differentiating keratinocytes both in vitro and in vivo (Zhao et al., PLoS ONE 6 (12) (2011) e28267). We demonstrate here that extracellular calcium (Ca2+) enhances differentiation of keratinocytes and that this is associated with increased spectrin expression and formation of a spectrin-based cytoskeleton. While Retinoic acid (RA) also enhanced keratinocyte differentiation, it abrogated the spectrin-based cytoskeleton in keratinocytes. Furthermore, RA substantially inhibited expression of both Src and PI3K-p85α and consequently the amounts of specific phosphorylation of both of these proteins. RA also enhanced AKT expression and dramatically induced phosphorylation of AKT(Thr308), accompanied by phosphorylation of both PKCδ(Thr505) and β-adducin(Ser662) and upregulated cyclin D2 and down-regulated cyclin B1. On the other hand, Ca2+ overcame the inhibitory effects of RA on expression of Src, PI3K-p85α and cyclin B1 by maintaining high levels of phosphorylation of both Src(Tyr527) and PI3K-p85α and preventing phosphorylation of AKT(Thr308), PKCδ(Thr505) and β-adducin(Ser662). These data highlight the importance of Ca2+ in both spectrin expression and the organizational integrity of the spectrin-based cytoskeleton in differentiating keratinocytes and assist in elucidating the signalling pathways involved.  相似文献   

4.
Oral squamous cell carcinoma (OSCC) is a highly lethal cancer in the world, and the prognosis of OSCC is poor with a 60% 5-year survival rate in recent decades. Here, we introduced a novel secretory and acid glycoprotein with cysteine rich (secreted protein acidic and rich in cysteine, SPARC), which is correlated with the worst pattern of invasion (WPOI) and prognosis of OSCC. SPARC expression levels were measured in OSCC tissues and normal tissues using quantitative polymerase chain reaction and immunohistochemistry. The influence of SPARC on cell proliferation was examined by cell counting kit-8, colony formation, and Edu tests. Then, the effect of SPARC on the metastasis of OSCC cells was detected by wound healing and transwell migration assays. Next, the biologic characteristics of SPARC shared by STRING were analyzed. Furthermore, the underlying mechanisms were confirmed by western blot analysis. SPARC revealed higher expression in OSCC tissues than nontumor tissues. Higher SPARC expression was correlated with poorer tumor differentiation, poorer WPOI pattern, and significantly and shorter overall survival. Knockdown SPARC significantly restrained OSCC cell growth, migration, and invasion. In addition, bioinformatics analysis found SPARC had a coexpression network with the platelet-derived growth factor-B (PDGFB) and PI3K/AKT signaling pathways with minimal false discovery rate. Furthermore, SPARC promotes OSCC cells metastasis by regulating the expressions of PDGFB, PDGFRβ, p-PDGFRβ , and the PI3K/AKT pathway. Higher SPARC expression was positively correlated with poor WPOI and differentiation in OSCC. SPARC activates the PI3K/AKT/PDGFB/PDGFRβ axis to promote proliferation and metastasis by OSCC cell lines. Therefore, SPARC may be a potential therapeutic target for patients with OSCC.  相似文献   

5.
Angiogenesis, a hallmark of tumor growth, is regulated by various angiogenic factors. Recent studies have shown that osteopontin (OPN) is a secreted, integrin-binding protein that contributes to glioma progression. However, its effect on the angiogenesis of gliomas is not fully understood. To elucidate the role of OPN in the process of glioma angiogenesis, endothelial progenitor cells (EPCs) were treated with conditioned media of human glioma SHG44 cells overexpressing OPN. Here, we identified that OPN secreted by glioma cells accelerated EPCs angiogenesis in vitro, including proliferation, migration, and tube formation. OPN also induced the activation of AKT and endothelial nitric oxide synthase (eNOS) and increased NO production without affecting the expression of VEGF, VEGFR-1, or VEGFR-2. Moreover, the avβ3 antibody, the PI3-K inhibitor LY294002 and the eNOS inhibitor NMA suppressed the OPN-mediated increase in NO production and angiogenesis in EPCs. Taken together, these results demonstrate that OPN directly stimulates angiogenesis via the avβ3/PI3-K/AKT/eNOS/NO signaling pathway and may play an important role in tumorigenesis by enhancing angiogenesis in gliomas.  相似文献   

6.
Interleukin 6 is the in vivo growth factor of myeloma cells. In response to IL-6 stimulation, the PI3K/AKT signaling pathway is activated in these cells. With comparative proteomic approaches, this study reveals many putative downstream effectors of the PI3K/AKT pathway. Mass spectrometry analysis of excised protein spots from 2-dimensional gel allowed the identification of proteins such as β-Actin, cyclophilin A, E3 SUMO-protein ligase PIAS-NY protein, HSP 27, PML, and transforming growth factor β-2. Among these putative effectors, β-Actin was chosen for further characterization. Phosphorylation of β-Actin by AKT upon IL-6 stimulation was confirmed by western blotting using a phospho-AKT substrate antibody. Interestingly, IL-6 significantly increased cell migration (P < 0.05) and the content of filamentous actin (P < 0.05). Therefore, IL-6 stimulation could have effects on the migration of myeloma cells, and the phosphorylation of β-Actin is probably involved in the process.  相似文献   

7.
The PI3K-AKT pathway is frequently activated in human cancers, including breast cancer, and its activation appears to be critical for tumor maintenance. Some malignant cells are dependent on activated AKT for their survival; tumors exhibiting elevated AKT activity show sensitivity to its inhibition, providing an Achilles heel for their treatment. Here we show that the PKCη isoform is a negative regulator of the AKT signaling pathway. The IGF-I induced phosphorylation on Ser473 of AKT was inhibited by the PKCη-induced expression in MCF-7 breast adenocarcinoma cancer cells. This was further confirmed in shRNA PKCη-knocked-down MCF-7 cells, demonstrating elevated phosphorylation on AKT Ser473. While PKCη exhibited negative regulation on AKT phosphorylation it did not alter the IGF-I induced ERK phosphorylation. However, it enhanced ERK phosphorylation when stimulated by PDGF. Moreover, its effects on IGF-I/AKT and PDGF/ERK pathways were in correlation with cell proliferation. We further show that both PKCη and IGF-I confer protection against UV-induced apoptosis and cell death having additive effects. Although the protective effect of IGF-I involved activation of AKT, it was not affected by PKCη expression, suggesting that PKCη acts through a different route to increase cell survival. Hence, our studies show that PKCη provides negative control on AKT pathway leading to reduced cell proliferation, and further suggest that its presence/absence in breast cancer cells will affect cell death, which could be of therapeutic value.  相似文献   

8.
Few studies have explored the effect of hydrogen on neuronal apoptosis or impaired nerve regeneration after traumatic brain injury, and the mechanisms involved in these processes are unclear. In this study, we explored neuroprotection of hydrogen-rich medium through activation of the miR-21/PI3K/AKT/GSK-3β pathway in an in vitro model of traumatic brain injury. Such model adopted PC12 cells with manual scratching. Then, injured cells were cultured in hydrogen-rich medium for 48 hours. Expression of miR-21, p-PI3K, p-Akt, p-GSK-3β, Bax and Bcl-2 was measured using RT-qPCR, Western blot analysis and immunofluorescence staining. Rate of apoptosis was determined using TUNEL staining. Neuronal regeneration was assessed using immunofluorescence staining. The results showed that hydrogen-rich medium improved neurite regeneration and inhibited apoptosis in the injured cells. Scratch injury was accompanied by up-regulation of miR-21, p-PI3K, p-Akt and p-GSK-3β. A miR-21 antagomir inhibited the expression of these four molecules, while a PI3K blocker only affected the three proteins and not miR-21. Both the miR-21 antagomir and PI3K blocker reversed the protective effect of hydrogen. In conclusion, hydrogen exerted a neuroprotective effect against neuronal apoptosis and impaired nerve regeneration through activation of miR-21/PI3K/AKT/GSK-3β signalling in this in vitro model of traumatic brain injury.  相似文献   

9.
10.
ERα36,a variant of estrogen receptor-α,acts as a dominant-negative factor in both estrogen-dependent and estrogen-independent transactivation signaling pathways,and is a key factor in the promotion,progression and prognosis of breast cancers.Caveolin-1,a 22-to 24-kD integral membrane protein,may function as a tumor suppressor in inhibiting of many growth-promoting signaling pathways.It was shown that downregulation of Caveolin-1 strengthens the interaction of ERα and Caveolin-1.In conclusion,Caveolin-1 gene silencing activated the PI3K/AKT signaling pathway in an ERα36-dependent way.Our finding may provide a promising therapeutic target of breast cancer.  相似文献   

11.
12.
Endometritis is an inflammatory change in the structure of the endometrium due to various causes and is a common cause of infertility. Studies have confirmed that microRNAs (miRNAs) play a key regulatory role in various inflammatory diseases. However, the miRNA-mediated mechanism of endometrial inflammation induced by lipopolysaccharides (LPS) remains unclear. In this study, real-time quantitative polymerase chain reaction, Western blot analysis, immunofluorescence and Rac family small GTPase 1 (Rac1) interference were used to reveal the overexpression of miR-488 in the LPS-induced bovine uterus, and the effect of protein kinase B κ-light chain enhancement of the nuclear factor-activated B cells (AKT/NF-κB) pathway in intimal epithelial cells. The results showed that the expression of inflammatory cytokines such as interleukin-1β (IL-1β), IL-6, and tumor necrosis factor-α in the experimental group was significantly lower than that in the control group when miR-488 was overexpressed. Similar results were observed in the expression levels of p-AKT, p-IKK, and p-p65 proteins. In addition, the dual-luciferase reporter system confirmed that miRNA-488 may directly target the 3′-untranslated region of Rac1. In turn, the expression of Rac1 was inhibited. Moreover, the nuclear translocation of NF-κB was inhibited, and meanwhile, the accumulation of reactive oxygen species (ROS) in the cells was reduced. Thus, we provide basic data for the negative regulation of miR-488 in LPS-induced inflammation by inhibiting ROS production and the AKT/NF-kB pathway in intimal epithelial cells.  相似文献   

13.
Inflammation is characterized by early influx of polymorphonuclear neutrophils (PMNs), followed by a second wave of monocyte recruitment. PMNs mediate monocyte recruitment via their release of heparin binding protein (HBP), which activates CCR2 (CC-chemokine receptor 2) on monocytes. However, the pathways for such signal transmission remain unknown. Accumulating evidences have highlighted the importance of leukocyte-endothelial cell interactions in the initiation of inflammation. In this study, an interesting finding is that HBP enhances the secretion of monocyte chemotactic protein 1(MCP-1), ligand of CCR2, from a third party, the endothelial cells (ECs). HBP-induced increase in MCP-1 production was demonstrated at the protein, mRNA and secretion levels. Exposure of ECs to HBP elicited rapid phosphorylation of FAK/PI3K/AKT and p38 MAPK/NF-κB signaling. MCP-1 levels were attenuated during the response to HBP stimulation by pretreatment with a FAK inhibitor (or siRNA), a PI3K inhibitor, an AKT inhibitor, a p38 inhibitor (or siRNA) and two NF-κB inhibitors. Additionally, pretreatment with inhibitors to FAK, PI3K and AKT led to a decrease in HBP-induced phosphorylation of p38/NF-κB axis. These results showed that HBP induced MCP-1 expression via a sequential activation of the FAK/PI3K/AKT pathway and p38 MAPK/NF-κB axis. Interestingly, the patterns of HBP regulation of the expression of the adhesion molecular VCAM-1 were similar to those seen in MCP-1 after pretreatment with inhibitors (or not). These findings may help to determine key pharmacological points of intervention, thus slowing the progress of inflammatory-mediated responses in certain diseases where inflammation is detrimental to the host.  相似文献   

14.
Breast cancer (BC) is a common malignancy which is the most frequently diagnosed cancer in women all over the worldwide. This study aimed to investigate the roles of miR-1469 in the development of BC, as well as its regulatory mechanism. The expression levels of miR-1469 in BC tissues, serum, and cell lines were determined. Effects of overexpression of miR-1469 on MCF7 cell viability, colony-forming ability, apoptosis, migration, and invasion were then investigated. Furthermore, the potential target of miR-1469 in MCF7 cells was explored. Besides, the association between miR-1469, PTEN/PI3K/AKT, and Wnt/β-catenin pathways was elucidated. Notably, confirmatory experiments by downregulation of miR-1469 in SK-BR-3 cells were further performed. The miR-1469 expression was significantly downregulated in BC tissues, serum, and cell lines. The overexpression of miR-1469 significantly inhibited the proliferation, arrested cell-cycle at G2/M phase, increased apoptosis, suppressed migration, and invasion of MCF-7 cells. In addition, HOXA1 was verified as a direct target of miR-1469, and the effects of overexpression of miR-1469 on the malignant behaviors of MCF7 cells were significantly counteracted by overexpression of HOXA1 concurrently. Furthermore, the overexpression of miR-1469 suppressed the activation of PTEN/PI3K/AKT and Wnt/β-catenin pathways, which was reversed overexpression of HOXA1 concurrently. Besides, confirmatory experiments showed that the inhibition of miR-1469 promoted the malignant behaviors of SK-BR-3 cells, which was inversed after miR-1469 inhibition and HOXA1 knockdown at the same time. Our findings reveal that downregulation of miR-1469 may promote the development of BC by targeting HOXA1 and activating PTEN/PI3K/AKT and Wnt/β-catenin pathways. MiR-1469 may serve as a promising target for BC therapy.  相似文献   

15.
The migration and proliferation of bone marrow-derived mesenchymal stem cells (BMSC) is critical to treatment of ischemic injury. Apelin is a recently discovered vasoactive peptide, which has been demonstrated to be the endogenous ligand for the previously orphaned G protein-coupled receptor, angiotensin-like 1 receptor. Apelin has mitogenic effects on a wide variety of cell types. However, the effects of apelin on BMSC proliferation have not been evaluated. We hypothesize that the peptide apelin-13 may enhance BMSC proliferation. Rat BMSC obtain from the bone marrow of 3- to 4-month-old SD rats. There are novel data suggesting that apelin-13 significantly simulates BMSC proliferation and promotes the expression of p-AKT, p-GSK3β and cyclin D1 in a concentration-dependent manner. Apelin-13-induced the increases of p-AKT, p-GSK3β and cyclin D1 could be abolished by LY294002 (AKT inhibitor) which prevents apelin-13-induced BMSC proliferation. However, LiCl (GSK inhibitor) up-regulates the expression of p-GSK3β and cyclin D1, promotes BMSC proliferation, which enhances the proliferation effect of apelin-13 obviously. In conclusion, the AKT/GSK3β/cyclin D1 signaling pathway is involved in apelin-13-induced BMSC proliferation.  相似文献   

16.

Background

Cervical cancer is a chronic inflammatory disease of multifactorial etiology usually presenting in sexually active women. Exposure of neoplastic cervical epithelial cells to seminal plasma (SP) has been shown to promote the growth of cancer cells in vitro and tumors in vivo by inducing the expression of inflammatory mediators including pro-inflammatory cytokines. IL-1α is a pleotropic pro-inflammatory cytokine induced in several human cancers and has been associated with virulent tumor phenotype and poorer prognosis. Here we investigated the expression of IL-1α in cervical cancer, the role of SP in the regulation of IL-1α in neoplastic cervical epithelial cells and the molecular mechanism underlying this regulation.

Methods and results

Real-time quantitative RT-PCR confirmed the elevated expression of IL-1α mRNA in cervical squamous cell carcinoma and adenocarcinoma tissue explants, compared with normal cervix. Using immunohistochemistry, IL-1α was localized to the neoplastically transformed squamous, columnar and glandular epithelium in all cases of squamous cell carcinoma and adenocarcinomas explants studied. We found that SP induced the expression of IL-α in both normal and neoplastic cervical tissue explants. Employing HeLa (adenocarcinoma) cell line as a model system we identified PGE2 and EGF as possible ligands responsible for SP-mediated induction of IL-1α in these neoplastic cells. In addition, we showed that SP activates EP2/EGFR/PI3kinase-Akt signaling to induce IL-1α mRNA and protein expression. Furthermore, we demonstrate that in normal cervical tissue explants the induction of IL-1α by SP is via the activation of EP2/EGFR/PI3 kinase-Akt signaling.

Conclusion

SP-mediated induction of IL-1α in normal and neoplastic cervical epithelial cells suggests that SP may promote cervical inflammation as well as progression of cervical cancer in sexually active women.
  相似文献   

17.
18.
Chemokines and chemokine receptors play an important role in tumorigenesis. Angiogenesis is a vital part of the occurrence, development and metastasis of cancer. CCR6 is an important factor during tumor progression; however, its function in tumor angiogenesis is not fully understood. In our study, we found that CCR6 was significantly overexpressed in colorectal cancer (CRC) tissues and predicted a poor prognosis in CRC patients. We then verified the function of CCR6 on tumor angiogenesis in vivo and in vitro. We observed that silencing CCR6 could decrease angiogenesis by inhibiting the proliferation and migration of human umbilical vein endothelial cells (HUVECs), whereas overexpression of CCR6 can promote angiogenesis. Additionally, we investigated the molecular mechanisms and demonstrated that activation of the AKT/NF-κB pathway maybe involved in CCR6-mediated tumor angiogenesis, which was able to promote the secretion of vascular endothelial growth factor A (VEGF-A). In conclusion, CCR6 facilitates tumor angiogenesis via the AKT/NF-κB/VEGF pathway in colorectal cancer. CCR6 inhibition may be a novel option for anti-vascular treatment in CRC.  相似文献   

19.
20.
Bone morphogenetic proteins (BMPs) have been implicated in tumorigenesis and metastatic progression in various types of cancer cells, but the role and cellular mechanism in the invasive phenotype of gastric cancer cells is not known. Herein, we determined the roles of phosphoinositide 3-kinase (PI3K)/AKT, extracellular signal-regulated protein kinase (ERK), nuclear factor (NF)-κB, and matrix metalloproteinase (MMP) expression in BMP-2-mediated metastatic function in gastric cancer. We found that stimulation of BMP-2 in gastric cancer cells enhanced the phosphorylation of AKT and ERK. Accompanying activation of AKT and ERK kinase, BMP-2 also enhanced phosphorylation/degradation of IκBα and the nuclear translocation/activation of NF-κB. Interestingly, blockade of PI3K/AKT and ERK signaling using LY294002 and PD98059, respectively, significantly inhibited BMP-2-induced motility and invasiveness in association with the activation of NF-κB. Furthermore, BMP-2-induced MMP-9 expression and enzymatic activity was also significantly blocked by treatment with PI3K/AKT, ERK, or NF-κB inhibitors. Immunohistochemistry staining of 178 gastric tumor biopsies indicated that expression of BMP-2 and MMP-9 had a significant positive correlation with lymph node metastasis and a poor prognosis. These results indicate that the BMP-2 signaling pathway enhances tumor metastasis in gastric cancer by sequential activation of the PI3K/AKT or MAPK pathway followed by the induction of NF-κB and MMP-9 activity, indicating that BMP-2 has the potential to be a therapeutic molecular target to decrease metastasis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号