首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Oresitrophe and Mukdenia (Saxifragaceae) are epilithic sister genera used in traditional Chinese medicine. The taxonomy of Mukdenia, especially of M. acanthifolia, has been controversial. To address this, we produced plastid and mitochondrial data using genome skimming for Mukdenia acanthifolia and Mukdenia rossii, including three individuals of each species. We assembled complete plastomes, mitochondrial CDS and nuclear ribosomal ETS/ITS sequences using these data. Comparative analysis shows that the plastomes of Mukdenia and Oresitrophe are relatively conservative in terms of genome size, structure, gene content, RNA editing sites and codon usage. Five plastid regions that represent hotspots of change (trnH-psbA, psbC-trnS, trnM-atpE, petA-psbJ and ccsA-ndhD) are identified within Mukdenia, and six regions (trnH-psbA, petN-psbM, trnM-atpE, rps16-trnQ, ycf1 and ndhF) contain a higher number of species-specific parsimony-informative sites that may serve as potential DNA barcodes for species identification. To infer phylogenetic relationships between Mukdenia and Oresitrophe, we combined our data with published data based on three different datasets. The monophyly of each species (Oresitrophe rupifraga, M. acanthifolia and M. rossii) and the inferred topology ((M. rossii, M. acanthifolia), O. rupifraga) are well supported in trees reconstructed using the complete plastome sequences, but M. acanthifolia and M. rossii did not form a separate clade in the trees based on ETS + ITS data, while the mitochondrial CDS trees are not well-resolved. We found low recovery of genes in the Angiosperms353 target enrichment panel from our unenriched genome skimming data. Hybridization or incomplete lineage sorting may be the cause of discordance between trees reconstructed from organellar and nuclear data. Considering its morphological distinctiveness and our molecular phylogenetic results, we strongly recommend that M. acanthifolia be treated as a distinct species.  相似文献   

2.
Two Orthotrichum species of the subgenus Orthophyllum were compared with other representatives of this genus using the internally transcribed spacer regions 1 and 2, the chloroplast trnH-psbA region and ISSR and ISJ DNA markers. The applied DNA markers revealed many bands and mutations specific only to O. gymnostomum and O. obtusifolium. A phylogenetic analysis clearly supported the previous concepts postulating that species of the subgenus Orthophyllum should be recognized as separate genus Nyholmiella.  相似文献   

3.
Sequences of the chloroplast trnT-trnF region were analyzed for species of the genus Potamogeton distributed in China to reconstruct phylogenetic relationships. The phylogenetic analyses showed that the genus Potamogeton could be divided into two clades. Eighteen species formed a monophyletic clade while the remaining four formed a second, distinguishable one, supporting the conventional treatment that the genus Potamogeton contains the submerged linear-leaved group and the submerged broad-leaved group. The first clade, which represented the subgenus Potamogeton, could be further divided into two subclades. The second clade, which represented the subgenus Coleogeton, displayed a close phylogenetic relationship with the subgenus Potamogeton and occupied a unique position within the genus Potamogeton. This finding suggested that the treatment of the subgenus Coleogeton, which was once regarded as the genus Stuckenia Börner, may need to be reconsidered. Furthermore, identification of maternal donors of some hybrids was successfully applied based on sequence of maternally inherited chloroplast genome. The female parents of three putative hybrids, P. × malainoides, P. × anguillanus, and P. × orientalis, were proved to be accordant with previous morphological conclusions.  相似文献   

4.
Magnoliaceae, an assemblage of early diverged angiosperms, comprises two subfamilies, speciose Magnolioideae with approximately 300 species in varying numbers of genera and monogeneric Liriodendroideae with two species in Liriodendron L. This family occupies a pivotal phylogenetic position with important insights into the diversification of early angiosperms, and shows intercontinentally disjunct distribution patterns between eastern Asia and the Americas. Widespread morphological homogeneity and slow substitution rates in Magnolia L. s.l. resulted in poorly supported phylogenetic relationships based on morphology or molecular evidence, which hampers our understanding of the genus’ temporal and spacial evolution. Here, based on the newly generated genome skimming data for 48 Magnolia s.l. species, we produced robust Magnolia phylogenies using genome-wide markers from both plastid genomes and single nucleotide polymorphism data. Contrasting the plastid and nuclear phylogenies revealed extensive cytonuclear conflicts in both shallow and deep relationships. ABBA-BABA and PhyloNet analyses suggested hybridization occurred within sect. Yulania, and sect. Magnolia, which is in concordance with the ploidy level of the species in these two sections. Divergence time estimates and biogeographic reconstruction indicated that the timing of the three tropical Magnolia disjunctions coincided with the mid-Eocene cooling climate and/or late Eocene climate deterioration, and two temperate disjunctions occurred much later, possibly during the warm periods of the Miocene, hence supporting the boreotropical flora concept of Magnolia s.l.  相似文献   

5.
Phylogenomic evidence from an increasing number of studies has demonstrated that different data sets and analytical approaches often reconstruct strongly supported but conflicting relationships. In this study, 785 single-copy nuclear genes and 75 complete plastomes were used to infer the phylogenetic relationships and estimate the historical biogeography of the apple genus Malus sensu lato, an economically important lineage disjunctly distributed in the Northern Hemisphere and involved in known and suspected hybridization and allopolyploidy events. The nuclear phylogeny recovered the monophyly of Malus s.l. (including Docynia); however, the genus was supported to be biphyletic in the plastid phylogeny. An ancient chloroplast capture event in the Eocene in western North America best explains the cytonuclear discordance. Our conflict analysis demonstrated that ILS, hybridization, and allopolyploidy could explain the widespread nuclear gene tree discordance. One deep hybridization event (Malus doumeri) and one recent event (Malus coronaria) were detected in Malus s.l. Furthermore, our historical biogeographic analysis integrating living and fossil data supported a widespread East Asian-western North American origin of Malus s.l. in the Eocene, followed by several extinction and dispersal events in the Northern Hemisphere. We also propose a general workflow for assessing phylogenomic discordance and biogeographic analysis using deep genome skimming data sets.  相似文献   

6.
Complete plastid genome (plastome) sequences and nuclear ribosomal DNA (nrDNA) regions have been proposed as candidates for the next generation of DNA barcodes for plant species discrimination. However, the efficacy of this approach still lacks comprehensive evaluation. We carried out a case study in the economically important but phylogenetically and taxonomically difficult genus Panax (Araliaceae). We generated a large data set of plastomes and nrDNA sequences from multiple accessions per species. Our data improved the phylogenetic resolution and levels of species discrimination in Panax, compared to any previous studies using standard DNA barcodes. This provides new insights into the speciation, lineage diversification and biogeography of the genus. However, both plastome and nrDNA failed to completely resolve the phylogenetic relationships in the Panax bipinnatifidus species complex, and only half of the species within it were recovered as monophyletic units. The results suggest that complete plastome and ribosomal DNA sequences can substantially increase species discriminatory power in plants, but they are not powerful enough to fully resolve phylogenetic relationships and discriminate all species, particularly in evolutionarily young and complex plant groups. To gain further resolving power for closely related species, the addition of substantial numbers of nuclear markers is likely to be required.  相似文献   

7.
Encompassing ca. 200 species distributed in paleotropical Africa and Asia, Amorphophallus is one of the largest genera of Araceae. In spite of the great economic interest in its glucomannan production, only a few studies have attempted to grasp the evolutionary history of this genus. In the current state of knowledge, four main clades, mostly linked to biogeographical delineation, have been identified from phylogenies based on a few genes. However, relationships among and within these clades still remain unclear, due to the rapid radiation that occurred during the early evolutionary history of the genus. Here, we generated genome skimming libraries for 43 specimens from 36 species distributed across the 4 clades, which allowed us to produce a phylogenetic matrix for a set of 71 plastid genes. Our phylogenies confirm the monophyly of these clades but show a new and well-resolved arrangement among these clades. Our analyses therefore provide a new scenario and timeline for the evolution of the main Amorphophallus clades, consistent with the morphological characteristics of the clades. The inferred scenario is also in agreement with climate dynamics and the onset of long-distance dispersal by the earliest migratory birds near the Oligocene/Miocene transition around 23 million years ago. Our study provides an up-to-date baseline to understand biogeographic and ecological processes that shaped the current diversity and distribution of Amorphophallus, paving the way for larger-scale phylogenomic studies based on plastid and nuclear genomes.  相似文献   

8.
Cymbidium is an orchid genus that has undergone rapid radiation and has high ornamental, economic, ecological and cultural importance, but its classification based on morphology is controversial. The plastid genome (plastome), as an extension of plant standard DNA barcodes, has been widely used as a potential molecular marker for identifying recently diverged species or complicated plant groups. In this study, we newly generated 237 plastomes of 50 species (at least two individuals per species) by genome skimming, covering 71.4% of members of the genus Cymbidium. Sequence-based analyses (barcoding gaps and automatic barcode gap discovery) and tree-based analyses (maximum likelihood, Bayesian inference and multirate Poisson tree processes model) were conducted for species identification of Cymbidium. Our work provides a comprehensive DNA barcode reference library for Cymbidium species identification. The results show that compared with standard DNA barcodes (rbcL + matK) as well as the plastid trnH-psbA, the species identification rate of the plastome increased moderately from 58% to 68%. At the same time, we propose an optimized identification strategy for Cymbidium species. The plastome cannot completely resolve the species identification of Cymbidium, the main reasons being incomplete lineage sorting, artificial cultivation, natural hybridization and chloroplast capture. To further explore the potential use of nuclear data in identifying species, the Skmer method was adopted and the identification rate increased to 72%. It appears that nuclear genome data have a vital role in species identification and are expected to be used as next-generation nuclear barcodes.  相似文献   

9.
DNA barcoding allows the identification of an organism by comparing the sequence of selected DNA regions (barcodes) with a previously compiled database, and it can be useful for taxonomic identification of species in complex genera, such as Tamarix. Many species of this genus show convergent morphology, which leads to frequent errors in their identification. Highly variable genetic markers, such as microsatellites or short sequence repeats (SSR), could be used to differentiate species where DNA barcodes fail. Here, we tested the ability of both, 5 different marker regions (rbcL, matK, ITS, trnH-psbA, and ycf1), and 14 microsatellites, to properly identify Tamarix species, especially those from the Mediterranean Basin, and compared the pros and cons of the different analytical methods for species identification. DNA barcoding allows the genetic identification of certain species in Tamarix. The two-locus barcodes matK + ITS and ITS + ycf1 were the best-performing combinations, allowing up to 69% and 70%, respectively, correct identification. However, DNA barcoding failed in phylogenetically close groups, such as many Mediterranean species. The use of SSR can aid the identification of species, and the combination of both types of data (DNA barcoding and SSR) improved the success. The combination of data was especially relevant in detecting the presence of hybridization processes, which are common in the genus. However, caution must be exercised when choosing the clustering methods for the SSR datasince different methods can lead to very different results.  相似文献   

10.
Plant DNA barcoding: from gene to genome   总被引:2,自引:0,他引:2       下载免费PDF全文
DNA barcoding is currently a widely used and effective tool that enables rapid and accurate identification of plant species; however, none of the available loci work across all species. Because single‐locus DNA barcodes lack adequate variations in closely related taxa, recent barcoding studies have placed high emphasis on the use of whole‐chloroplast genome sequences which are now more readily available as a consequence of improving sequencing technologies. While chloroplast genome sequencing can already deliver a reliable barcode for accurate plant identification it is not yet resource‐effective and does not yet offer the speed of analysis provided by single‐locus barcodes to unspecialized laboratory facilities. Here, we review the development of candidate barcodes and discuss the feasibility of using the chloroplast genome as a super‐barcode. We advocate a new approach for DNA barcoding that, for selected groups of taxa, combines the best use of single‐locus barcodes and super‐barcodes for efficient plant identification. Specific barcodes might enhance our ability to distinguish closely related plants at the species and population levels.  相似文献   

11.
Angelica is a taxonomically complex genus widespread throughout the North Temperate Zone. Previous phylogenetic studies of the genus have focused primarily on its East Asian species. The relationships among its North American members, the monophyly of these species, and the value of fruit morphology in circumscribing its taxa have yet to be examined. This study represents the most comprehensive sampling of Angelica to date (100 species) and includes all 26 species in North America. Relationships are inferred using Bayesian inference, maximum likelihood, and maximum parsimony analyses of ITS sequences and, for multiple accessions of each North American species, cpDNA ndhF-rpl32, rpl32-trnL, and psbM-psbD sequences. The fruit morphological characters examined were those considered phylogenetically important in East Asian Angelica. The results revealed that the North American species fell into three major clades: North American Angelica clade, Archangelica clade, and the Eurasian Angelica clade. Angelica dawsonii has affinities with Lomatium brandegeei. Fourteen species within the North American Angelica clade were strongly supported as monophyletic. Two paraphyletic species resulted in new combinations in A. lineariloba and A. venenosa. Conflict between the ITS-derived and cpDNA-derived phylogenies and the lack of resolution in portions of the trees may be due to chloroplast capture and rapid species radiation. Fruit morphology supported some interspecific relationships based on molecular data, and relationships revealed by ITS and cpDNA data were roughly in accordance with fruit classification type and geographic distribution region, respectively. A diagnostic key based on fruit morphology is provided for the identification of the North American Angelica taxa.  相似文献   

12.
Shibataea is a genus of temperate bamboos(Poaceae:Bambusoideae)endemic to China,but little is known about its phylogenetic position and interspecific relationships.To elucidate the phylogenetic relationship of the bamboo genus Shibataea,we performed genome-scale phylogenetic analysis of all seven species and one variety of the genus using double digest restriction-site associated DNA sequencing(dd RAD-seq)and whole plastid genomes generated using genome skimming.Our phylogenomic analyses based on dd RAD-seq and plastome data congruently recovered Shibataea as monophyletic.The nuclear data resolved S.hispida as the earliest diverged species,followed by S.chinensis,while the rest of Shibataea can be further divided into two clades.However,the plastid and nuclear topologies conflict significantly.By comparing the results of network analysis and topologies reconstructed from different datasets,we identify S.kumasasa as the most admixed species,which may be caused by incomplete lineage sorting(ILS)or interspecific gene flow with four sympatric species.This study highlights the power of dd RAD and plastome data in resolving complex relationships in the intractable bamboo genus.  相似文献   

13.
Genetic tools are increasingly used to identify and discriminate between species. One key transition in this process was the recognition of the potential of the ca 658bp fragment of the organelle cytochrome c oxidase I (COI) as a barcode region, which revolutionized animal bioidentification and lead, among others, to the instigation of the Barcode of Life Database (BOLD), containing currently barcodes from >7.9 million specimens. Following this discovery, suggestions for other organellar regions and markers, and the primers with which to amplify them, have been continuously proposed. Most recently, the field has taken the leap from PCR‐based generation of DNA references into shotgun sequencing‐based “genome skimming” alternatives, with the ultimate goal of assembling organellar reference genomes. Unfortunately, in genome skimming approaches, much of the nuclear genome (as much as 99% of the sequence data) is discarded, which is not only wasteful, but can also limit the power of discrimination at, or below, the species level. Here, we advocate that the full shotgun sequence data can be used to assign an identity (that we term for convenience its “DNA‐mark”) for both voucher and query samples, without requiring any computationally intensive pretreatment (e.g. assembly) of reads. We argue that if reference databases are populated with such “DNA‐marks,” it will enable future DNA‐based taxonomic identification to complement, or even replace PCR of barcodes with genome skimming, and we discuss how such methodology ultimately could enable identification to population, or even individual, level.  相似文献   

14.
Standard plant DNA barcodes based on 2–3 plastid regions, and nrDNA ITS show variable levels of resolution, and fail to discriminate among species in many plant groups. Genome skimming to recover complete plastid genome sequences and nrDNA arrays has been proposed as a solution to address these resolution limitations. However, few studies have empirically tested what gains are achieved in practice. Of particular interest is whether adding substantially more plastid and nrDNA characters will lead to an increase in discriminatory power, or whether the resolution limitations of standard plant barcodes are fundamentally due to plastid genomes and nrDNA not tracking species boundaries. To address this, we used genome skimming to recover near-complete plastid genomes and nuclear ribosomal DNA from Rhododendron species and compared discrimination success with standard plant barcodes. We sampled 218 individuals representing 145 species of this species-rich and taxonomically difficult genus, focusing on the global biodiversity hotspots of the Himalaya-Hengduan Mountains. Only 33% of species were distinguished using ITS+matK+rbcL+trnH-psbA. In contrast, 55% of species were distinguished using plastid genome and nrDNA sequences. The vast majority of this increase is due to the additional plastid characters. Thus, despite previous studies showing an asymptote in discrimination success beyond 3–4 plastid regions, these results show that a demonstrable increase in discriminatory power is possible with extensive plastid genome data. However, despite these gains, many species remain unresolved, and these results also reinforce the need to access multiple unlinked nuclear loci to obtain transformative gains in species discrimination in plants.  相似文献   

15.
The biologist's ruler for biodiversity is the species; accurate species identification is fundamental to the conservation of endangered species and in-depth biological scientific exploration. However, the delimitation and affinities of Horsfieldia in China has been controversial, owing in part to very low levels of molecular divergence within the family Myristicaceae. Because species boundaries and phylogenetic relationships within Horsfieldia are also unclear, 13 samples were collected across its distribution in China and their genomes were subjected to shotgun sequencing using Illumina platforms. A total of 40 487 994–84 801 416 pair-end clean reads were obtained and, after assembly, the complete chloroplast genome was recovered for all samples. Annotation analysis revealed a total of 112 genes, including 78 protein-coding genes, 30 transfer RNA, and 4 ribosomal RNA genes. Six variable loci (petN-psbM, trnH-psbA, ndhC-trnV, psbJ-psbL, ndhF, and rrn5-rrn23) were identified. Phylogenetic analyses strongly support the presence of four distinct species of Horsfieldia in China. In addition, samples that had been identified previously as Horsfieldia kingii (Hook. f.) Warb. were indistinguishable from those of H. prainii (King) Warb., suggesting that if H. kingii does occur in China, it was not collected in this study. Similarly, the chloroplast genome of one H. hainanensis Merr. sample from Guangxi province was identical to H. tetratepala C. Y. Wu, suggesting that the distribution range of H. hainanensis might be narrower than assumed previously. The phylogenetic relationships between the Chinese Horsfieldia species based on the whole chloroplast genomes was supported strongly, indicating the potential for using entire chloroplast genomes as super-barcodes for further resolution of the phylogeny of the genus Horsfieldia.  相似文献   

16.
Natural history collections are repositories of biodiversity and are potentially used by molecular ecologists for comparative taxonomic, phylogenetic, biogeographic and forensic purposes. Specimens in fish collections are preserved using a combination of methods with many fixed in formalin and then preserved in ethanol for long-term storage. Formalin fixation damages DNA, thereby limiting genetic analyses. In this study, the authors compared the DNA barcoding and identification success for frozen and formalin-fixed tissues obtained from specimens in the CSIRO Australian National Fish Collection. They studied 230 samples from fishes (consisting of >160 fish species). An optimized formalin-fixed, paraffin-embedded DNA extraction method resulted in usable DNA from degraded tissues. Four mini barcoding assays of the mitochondrial DNA (mtDNA) were characterized with Sanger and Illumina amplicon sequencing. In the good quality DNA (without exposure to formalin), up to 88% of the specimens were correctly matched at the species level using the cytochrome oxidase subunit 1 (COI) mini barcodes, whereas up to 58% of the specimens exposed to formalin for less than 8 weeks were correctly identified to species. In contrast, 16S primers provided higher amplification success with formalin-exposed tissues, although the COI gene was more successful for identification. Importantly, the authors found that DNA of a certain size and quality can be amplified and sequenced despite exposure to formalin, and Illumina sequencing provided them with greater power of resolution for taxa identification even when there was little DNA present. Overall, within parameter constraints, this study highlights the possibilities of recovering DNA barcodes for identification from formalin-fixed fish specimens, and the authors provide guidelines for when successful identification could be expected.  相似文献   

17.
The genus Mus encompasses at least 38 species divided into four subgenera: Mus , Pyromys , Nannomys and Coelomys . The subgenus Mus , which comprises the house mouse and related species, is by far the most extensively studied, although the subgenus Nannomys is the most speciose. Although the relationships within the subgenus Mus are rather well characterized, those between subgenera are still unclear. In the present study, phylogenetic analyses of the whole genus were performed using a larger species sample of Nannomys than in previous studies, and a nuclear gene (IRBP) in addition to mitochondrial data (cytochrome b and 12S rRNA). Members of the Acomyinae and Murinae were used as outgroups. Separate and combined analyses were performed with maximum parsimony, maximum likelihood and Bayesian methods, and divergence times were estimated. The results showed that the monophyly of the genus Mus and of each subgenus was strongly supported by the three genes and the combined analysis. The phylogenies derived from the three genes were on the whole congruent; however, several conflicting topologies were observed such as the relationships between the three Asian species of the subgenus Mus ( caroli , cervicolor and cookii ). Increasing the taxonomic sampling of Nannomys did not satisfactorily improve the resolution of relationships between the four subgenera. In addition, molecular calibrations indicate that the Mus and Nannomys radiation coincided with major environmental changes.  © 2005 The Linnean Society of London, Biological Journal of the Linnean Society , 2005, 84 , 417–427.  相似文献   

18.
Panax stipuleanatus (Araliaceae) is an endangered and medicinally important plant endemic to China. However, phylogenetic relationships within the genus Panax have remained unclear. In this study, we sequenced the complete plastome of P. stipuleanatus and included previously reported Panax plastomes to better understand the relationships between species and plastome evolution within the genus Panax. The plastome of P. stipuleanatus is 156,069 base pairs (bp) in length, consisting of a pair of inverted repeats (IRs, each 25,887 bp) that divide the plastome into a large single copy region (LSC, 86,126 bp) and a small single copy region (SSC, 8169 bp). The plastome contains 114 unigenes (80 protein-coding genes, 30 tRNA genes, and 4 rRNA genes). Comparative analyses indicated that the plastome gene content and order, as well as the expansion/contraction of the IR regions, are all highly conserved within Panax. No significant positive selection in the plastid protein-coding genes was observed across the eight Panax species, suggesting the Panax plastomes may have undergone a strong purifying selection. Our phylogenomic analyses resulted in a phylogeny with high resolution and supports for Panax. Nine proteincoding genes and 10 non-coding regions presented high sequence divergence, which could be useful for identifying different Panax species.  相似文献   

19.
The Small Subunit Ribosomal RNA gene (SSU rDNA) is a widely used tool to reconstruct phylogenetic relationships among foraminiferal species. Recently, the highly variable regions of this gene have been proposed as DNA barcodes to identify foraminiferal species. However, the resolution of these barcodes has not been well established, yet. In this study, we evaluate four SSU rDNA hypervariable regions (37/f, 41/f, 43/e, and 45/e) as DNA barcodes to distinguish among species of the genus Bolivina, with particular emphasis on Bolivina quadrata for which ten new sequences ( KY468817 – KY468826 ) were obtained during this study. Our analyses show that a single SSU rDNA hypervariable sequence is insufficient to resolve all Bolivina species and that some regions (37/f and 41/f) are more useful than others (43/e and 45/e) to distinguish among closely related species. In addition, polymorphism analyses reveal a high degree of variability. In the context of barcoding studies, these results emphasize the need to assess the range of intraspecific variability of DNA barcodes prior to their application to identify foraminiferal species in environmental samples; our results also highlight the possibility that a longer SSU rDNA region might be required to distinguish among species belonging to the same taxonomic group (i.e. genus).  相似文献   

20.
Both geographic isolation and polyploidization are assumed to play an important role in driving species diversification. However, this is rarely illustrated through phylogenomic analyses. The genus Eutrema (Brassicaceae), which also includes the salt-resistant species, are distributed mainly in Asia with extensive species diversification in the Qinghai–Tibet Plateau (QTP) and adjacent regions. In this study, we revealed almost fully resolved backbone relationships of the genus with genome re-sequencing data for genomes of 168 individuals from 28 species. Phylogenetic analyses of both plastomes and single-copy nuclear genes from the whole genome recovered six well-supported clades with almost consistent relationships. The first two clades are mainly distributed in central China and central Asia, while the other four in the QTP and adjacent regions. All of them diversified within 12 million years. Within each clade, we recovered numerous conflicts in the interspecific relationships between nuclear and plastome phylogenies, likely suggesting hybridization and incomplete lineage sorting during species diversification. Our estimation of genome size and comparison of the number of the single-copy nuclear genes demonstrated frequent occurrences of polyploids in the genus. Except for an establishment of the backbone phylogeny, our phylogenomic analyses suggest that in addition to strong geographic isolation, polyploidization may have played an important role in species diversification of this genus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号