首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Clathrin-mediated endocytosis (CME) is the major endocytic pathway in eukaryotic cells that directly regulates abundance of plasma membrane proteins. Clathrin triskelia are composed of clathrin heavy chains (CHCs) and light chains (CLCs), and the phytohormone auxin differentially regulates membrane-associated CLCs and CHCs, modulating the endocytosis and therefore the distribution of auxin efflux transporter PIN-FORMED2 (PIN2). However, the molecular mechanisms by which auxin regulates clathrin are still poorly understood. Transmembrane kinase (TMKs) family proteins are considered to contribute to auxin signaling and plant development; it remains unclear whether they are involved in PIN transport by CME. We assessed TMKs involvement in the regulation of clathrin by auxin, using genetic, pharmacological, and cytological approaches including live-cell imaging and immunofluorescence. In tmk1 mutant seedlings, auxin failed to rapidly regulate abundance of both CHC and CLC and to inhibit PIN2 endocytosis, leading to an impaired asymmetric distribution of PIN2 and therefore auxin. Furthermore, TMK3 and TMK4 were shown not to be involved in regulation of clathrin by auxin. In summary, TMK1 is essential for auxin-regulated clathrin recruitment and CME. TMK1 therefore plays a critical role in the establishment of an asymmetric distribution of PIN2 and an auxin gradient during root gravitropism.  相似文献   

2.
Plants have evolved a tremendous ability to respond to environmental changes by adapting their growth and development. The interaction between hormonal and developmental signals is a critical mechanism in the generation of this enormous plasticity. A good example is the response to the hormone ethylene that depends on tissue type, developmental stage, and environmental conditions. By characterizing the Arabidopsis wei8 mutant, we have found that a small family of genes mediates tissue-specific responses to ethylene. Biochemical studies revealed that WEI8 encodes a long-anticipated tryptophan aminotransferase, TAA1, in the essential, yet genetically uncharacterized, indole-3-pyruvic acid (IPA) branch of the auxin biosynthetic pathway. Analysis of TAA1 and its paralogues revealed a link between local auxin production, tissue-specific ethylene effects, and organ development. Thus, the IPA route of auxin production is key to generating robust auxin gradients in response to environmental and developmental cues.  相似文献   

3.
Modern corn ( Zea mays L.) varieties have been selected for their ability to maintain productivity in dense plantings. We have tested the possibility that the physiological consequence of the selection of the modern hybrid, 3394, for increased crop yield includes changes in responsiveness to auxin and light. Etiolated seedlings in the modern line are shorter than in an older hybrid, 307, since they produce shorter coleoptile, mesocotyl, and leaves (blade as well as sheath). Etiolated 3394 seedlings, as well as isolated mesocotyl and sheath segments, were less responsive to auxin and an inhibitor of polar auxin transport, N-1-naphthylphthalamic acid (NPA). Reduced response of 3394 to auxin was associated with less reduction of elongation growth by light (white, red, far-red, blue) than in 307, whereas the activity of polar auxin transport (PAT) and its reduction by red or far-red light was similar in both genotypes. NPA reduced PAT in etiolated 3394 seedlings much less than in 307. A characteristic feature of 3394 plants is more erect leaves. In both hybrids, light (white, red, blue) increases leaf declination from the vertical, whereas NPA reduces leaf declination in 307, but not in 3394. Our results support findings that auxin and PAT are involved in elongation growth of corn seedlings, and we show that light interacts with auxin or PAT in regulation of leaf declination. We hypothesize that, relative to 307, more erect leaves in the modern hybrid may be primarily a consequence of a reduced amount of auxin receptor(s) and reduced responsiveness to light in etiolated 3394 plants. The more erect leaves in 3394 may contribute to the tolerance of the modern corn hybrid to dense planting.  相似文献   

4.
Plant architecture is regulated by endogenous developmental programs, but it can also be strongly influenced by cues derived from the environment. For example, rhizosphere conditions such as water and nutrient availability affect shoot and root architecture; this implicates the root as a source of signals that can override endogenous developmental programs. Cytokinin, abscisic acid, and carotenoid derivatives have all been implicated as long-distance signals that can be derived from the root. However, little is known about how root-derived signaling pathways are regulated. Here, we show that BYPASS1 (BPS1), an Arabidopsis gene of unknown function, is required to prevent constitutive production of a root-derived graft-transmissible signal that is sufficient to inhibit leaf initiation, leaf expansion, and shoot apical meristem activity. We show that this root-derived signal is likely to be a novel carotenoid-derived molecule that can modulate both root and shoot architecture.  相似文献   

5.
6.
7.
8.
9.
The CFTR (cystic fibrosis transmembrane conductance regulator) protein is a large polytopic protein whose biogenesis is inefficient. To better understand the regulation of CFTR processing and trafficking, we conducted a genetic screen that identified COMMD1 as a new CFTR partner. COMMD1 is a protein associated with multiple cellular pathways, including the regulation of hepatic copper excretion, sodium uptake through interaction with ENaC (epithelial sodium channel) and NF-kappaB signaling. In this study, we show that COMMD1 interacts with CFTR in cells expressing both proteins endogenously. This interaction promotes CFTR cell surface expression as assessed by biotinylation experiments in heterologously expressing cells through regulation of CFTR ubiquitination. In summary, our data demonstrate that CFTR is protected from ubiquitination by COMMD1, which sustains CFTR expression at the plasma membrane. Thus, increasing COMMD1 expression may provide an approach to simultaneously inhibit ENaC absorption and enhance CFTR trafficking, two major issues in cystic fibrosis.  相似文献   

10.
Somatic embryos directly formed at cut edges or on the surface of leaf explants, around cut ends or along side surfaces of petiole and stem explants of Golden Pothos [Epipremnum aureum (Linden & Andre) Bunt.] on Murashige and Skoog (MS) medium supplemented with N-(2-chloro-4-pyridyl)-N-phenylurea (CPPU) or N-phenyl-N-1, 2, 3-thiadiazol-5-ylurea (TDZ) with -naphthalene acetic acid (NAA) and a medium called MK containing MS salts with Kaos vitamins, supplemented with 2.0 mg/l TDZ and 0.2 mg/l NAA. Somatic embryos were also produced on MS medium containing 2.0 mg/l kinetin (KN) and 0.5 mg/l 2,4-dichlorophenoxyacetic acid (2,4-D) from leaf and petiole explants, MS medium supplemented with 2.0 mg/l CPPU and 0.5 mg/l 2,4-D from petiole and stem explants, and 2.0 mg/l TDZ and 0.2 mg/l or 0.5 mg/l 2,4-D from stem explants. In addition, somatic embryos occurred from stem explants on Chus N6 medium containing 2.0 mg/l CPPU and 0.2 mg/l NAA. Somatic embryos matured and grew into multiple buds, shoots, or even plantlets after 2–3 months on the initial culture medium. Germination was optimal on MS medium containing either 2 mg/l 6-benzylaminopurine (BA) and 0.2 mg/l NAA or 2 mg/l zeatin and 0.2 mg/l NAA. Shoots elongated better and roots developed well on MS medium with no growth regulators. Approximately 30–100 plantlets were regenerated from each explant. The regenerated plants grew vigorously after transplanting to a soil-less container substrate in a shaded greenhouse.  相似文献   

11.
Shoot apical meristems produce organs in a highly stereotypic pattern that involves auxin. Auxin is supposed to be actively transported from cell to cell by influx (AUXIN/LIKE AUXIN proteins) and efflux (PIN-FORMED proteins) membrane carriers. Current hypotheses propose that, at the meristem surface, PIN proteins create patterns of auxin gradients that, in turn, create patterns of gene expression and morphogenesis. These hypotheses are entirely based on work in Arabidopsis (Arabidopsis thaliana). To verify whether these models also apply to other species, we studied the behavior of PIN proteins during maize (Zea mays) development. We identified two novel putative orthologs of AtPIN1 in maize and analyzed their expression pattern during development. The expression studies were complemented by immunolocalization studies using an anti-AtPIN1 antibody. Interestingly, the maize proteins visualized by this antibody are almost exclusively localized in subepidermal meristematic layers. Both tassel and ear were characterized by a compact group of cells, just below the surface, carrying PIN. In contrast to or to complement what was shown in Arabidopsis, these results point to the importance of internally localized cells in the patterning process. We chose the barren inflorescence2 (bif2) maize mutant to study the role of auxin polar fluxes in inflorescence development. In severe alleles of bif2, the tassel and the ear present altered ZmPIN1a and ZmPIN1b protein expression and localization patterns. In particular, the compact groups of cells in the tassel and ear of the mutant were missing. We conclude that BIF2 is important for PIN organization and could play a role in the establishment of polar auxin fluxes in maize inflorescence, indirectly modulating the process of axillary meristem formation and development.  相似文献   

12.
Plant root development is mediated by the concerted action of the auxin and cytokinin phytohormones, with cytokinin serving as an antagonist of auxin transport. Here, we identify the AUXIN UP-REGULATED F-BOX PROTEIN1 (AUF1) and its potential paralog AUF2 as important positive modifiers of root elongation that tether auxin movements to cytokinin signaling in Arabidopsis (Arabidopsis thaliana). The AUF1 mRNA level in roots is strongly up-regulated by auxin but not by other phytohormones. Whereas the auf1 single and auf1 auf2 double mutant roots grow normally without exogenous auxin and respond similarly to the wild type upon auxin application, their growth is hypersensitive to auxin transport inhibitors, with the mutant roots also having reduced basipetal and acropetal auxin transport. The effects of auf1 on auxin movements may be mediated in part by the misexpression of several PIN-FORMED (PIN) auxin efflux proteins, which for PIN2 reduces its abundance on the plasma membrane of root cells. auf1 roots are also hypersensitive to cytokinin and have increased expression of several components of cytokinin signaling. Kinematic analyses of root growth and localization of the cyclin B mitotic marker showed that AUF1 does not affect root cell division but promotes cytokinin-mediated cell expansion in the elongation/differentiation zone. Epistasis analyses implicate the cytokinin regulator ARR1 or its effector(s) as the target of the SKP1-Cullin1-F Box (SCF) ubiquitin ligases assembled with AUF1/2. Given the wide distribution of AUF1/2-type proteins among land plants, we propose that SCF(AUF1/2) provides additional cross talk between auxin and cytokinin, which modifies auxin distribution and ultimately root elongation.  相似文献   

13.
Leaves are the most important, fundamental units of organogenesis in plants. Although the basic form of a leaf is clearly divided into the leaf blade and leaf petiole, no study has yet revealed how these are differentiated from a leaf primordium. We analyzed the spatiotemporal pattern of mitotic activity in leaf primordia of Arabidopsis (Arabidopsis thaliana) in detail using molecular markers in combination with clonal analysis. We found that the proliferative zone is established after a short interval following the occurrence of a rod-shaped early leaf primordium; it is separated spatially from the shoot apical meristem and seen at the junction region between the leaf blade and leaf petiole and produces both leaf-blade and leaf-petiole cells. This proliferative region in leaf primordia is marked by activity of the ANGUSTIFOLIA3 (AN3) promoter as a whole and seems to be differentiated into several spatial compartments: activities of the CYCLIN D4;2 promoter and SPATULA enhancer mark parts of it specifically. Detailed analyses of the an3 and blade-on-petiole mutations further support the idea that organogenesis of the leaf blade and leaf petiole is critically dependent on the correct spatial regulation of the proliferative region of leaf primordia. Thus, the proliferative zone of leaf primordia is spatially differentiated and supplies both the leaf-blade and leaf-petiole cells.  相似文献   

14.
15.
The shape of the inflorescence in Arabidopsis thaliana ecotype Columbia is a raceme with individual flowers developing acropetally. The ecotype Landsberg harboring the erecta (er) mutation shows a corymb-like inflorescence, namely a compact inflorescence with a flattened arrangement of flower buds at the tip. To gain insight into inflorescence development, we previously isolated corymb-like inflorescence mutants, named corymbosa1 (crm1), and found that the corymb-like inflorescence in crm1-1 was due to reduced cell elongation of pedicels and stem internodes. Double mutants of crm1 with er and crm2, and crm1-1 crm2-1 er-105 triple mutants show an additive phenotype. crm1-1 is caused by a mutation in BIG, which is required for polar auxin transport. CRM1/BIG is expressed in inflorescence meristems, floral meristems and vascular tissues. We analyzed a collection of 12 reduced lateral root formation (rlr) mutants, which are allelic to crm1-1, and categorized the mutants into three classes, depending on the plant developmental defects. Although all 12 alleles had new stop codons, the phenotype of heterozygous crm1-1/doc1-1 and Northern blotting suggest that new crm1/big mutant alleles are hypomorphic. Auxin-responsive DR5rev::GFP expression was decreased in crm1-1 vasculature of pedicels and stem internodes. PINFORMED1 (PIN1) and CRM1/BIG are expressed in vasculature of pedicels and stem internodes. The severity of corymb-like inflorescence in crm1/big mutants correlated with increased levels of PIN1. Our results suggest that CRM1/BIG controls the elongation of the pedicels and stem internodes through auxin action.  相似文献   

16.
17.
Leaf segmentation learns more about leaf-level traits such as leaf area, count, stress, and development phases. In plant phenotyping, segmentation and counting of plant organs like leaves are a major challenge due to considerable overlap between leaves and varying environmental conditions, including brightness variation and shadow, blur due to wind. Further, the plant's inherent challenges, such as the leaf texture, genotype, size, shape, and density variation of leaves, make the leaf segmentation task more complex. To meet these challenges, the present work proposes a novel method for leaf segmentation and counting employing Eff-Unet++, an encoder-decoder-based architecture. This architecture uses EfficientNet-B4 as an encoder for accurate feature extraction. The redesigned skip connections and residual block in the decoder utilize encoder output and help to address the information degradation problem. In addition, the redesigned skip connections reduce the computational complexity. The lateral output layer is introduced to aggregate the low-level to high-level features from the decoder, which improves segmentation performance. The proposed method validates its performance on three datasets: KOMATSUNA dataset, Multi-Modality Plant Imagery Dataset (MSU-PID), and Computer Vision for Plant Phenotyping dataset (CVPPP). The proposed approach outperforms the existing state-of-the-art methods UNet, UNet++, Residual-UNet, InceptionResv2-UNet, and DeeplabV3 leaf segmentation results achieve best dice (BestDice): 83.44, 71.17, 78.27 and Foreground-Background Dice (FgBgDice): 97.48, 91.35, 96.38 on KOMATSUNA, MSU-PID, and CVPPP dataset respectively. In addition, for leaf counting the results are difference in count (DiffFG): 0.11, 0.03, 0.12 and Absolute Difference in count (AbsDiffFG): 0.21, 0.38, 1.27 on KOMATSUNA, MSU-PID, and CVPPP dataset respectively.  相似文献   

18.
19.
20.
The centrosome is the microtubule organizing center important for the establishment of the mitotic spindle in animal cells. In mitosis, cells normally contain two centrosomes, one for each pole of the bipolar spindle. If a cell acquires additional centrosomes, it has the potential to build a multi-polar spindle which could lead to catastrophic errors in chromosome segregation. Although such an event is unlikely to produce viable daughter cells, an increase in centrosome number has been shown to cause chromosome instability and produce anneuploid daughter cells 1-3. Accordingly, supernumerary centrosomes have been found in a variety of human cancers and accumulation of additional centrosomes has been associated with the process of tumorigenesis 1, 4-9. Despite the obvious importance of regulating centrosome number, relatively little is known about how centrosome duplication is regulated. Perhaps surprisingly, several recent studies, including three articles in this issue of Cell Cycle, implicate proteins involved in the regulation of chromosome cohesion in the maintenance of centrosome number during mitosis 10-14. Here we will discuss these findings and what they may tell us about the regulation of centrosome number.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号