首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Although genomics techniques such as DNA microarrays have been widely used in virology, much more limited use has been made of proteomics. Although difficult, proteomics can greatly contribute to an understanding of virus–cell interactions, including the ternary structure of viral receptors at the cell surface, post-translational modifications and isoforms of critical viral and cellular proteins and even to the structure of viruses. Proteomics techniques also offer the potential for discovering markers for diagnostic and prognostic tests of viral infections in vivo. This review describes the use of several proteomic approaches for the analysis of HIV–cellular receptor interactions, the molecular mechanisms of transport of herpes simplex virus within neurons, and the structure of the tegument of herpes simplex virus.  相似文献   

2.
3.
The vertebrate vasculature is an essential organ network with major roles in health and disease. The establishment of balanced cell–cell adhesion in the endothelium is crucial for the functionality of the vascular system. Furthermore, the correct patterning and integration of vascular endothelial cell–cell adhesion drives the morphogenesis of new vessels, and is thought to couple physical forces with signaling outcomes during development. Here, we review insights into this process that have come from studies in zebrafish. First, we describe mutants in which endothelial adhesion is perturbed, second we describe recent progress using in vivo cell biological approaches that allow the visualization of endothelial cell–cell junctions. These studies underline the profound potential of this model system to dissect in great detail the function of both known and novel regulators of endothelial cell–cell adhesion.  相似文献   

4.
Vegetation History and Archaeobotany - A research project carried out in Santa Giusta lagoon, Sardinia, since 2005 has revealed the presence of Phoenician and Punic waterlogged archaeological...  相似文献   

5.
The present article gives a brief survey of results of studies in the area of plant embryology directly associated with the discovery made by S.G. Navashin in 1898 of double fertilization in vivo and in vitro. These studies utilized methods of electronic and fluorescence microscopy, cytophotometry, and cultures of isolated ovules, sperm, and the embryo sac central cell. Questions related to the origin of the female gametophyte of flowering plants, double fertilization, and the endosperm are considered. It is emphasized that progress in this field is associated chiefly with the study of molecular processes that regulate the development and functioning of the female gametophyte and the sporophyte on early stages of ontogenesis.  相似文献   

6.
7.
Something in the air? New insights into mammalian pheromones   总被引:11,自引:0,他引:11  
Olfaction is the dominant sensory modality for most animals and chemosensory communication is particularly well developed in many mammals. Our understanding of this form of communication has grown rapidly over the last ten years since the identification of the first olfactory receptor genes. The subsequent cloning of genes for rodent vomeronasal receptors, which are important in pheromone detection, has revealed an unexpected diversity of around 250 receptors belonging to two structurally different classes. This review will focus on the chemical nature of mammalian pheromones and the complementary roles of the main olfactory system and vomeronasal system in mediating pheromonal responses. Recent studies using genetically modified mice and electrophysiological recordings have highlighted the complexities of chemosensory communication via the vomeronasal system and the role of this system in handling information about sex and genetic identity. Although the vomeronasal organ is often regarded as only a pheromone detector, evidence is emerging that suggests it might respond to a much broader variety of chemosignals.  相似文献   

8.
Dendritic cells (DCs) are the most powerful antigen-presenting cells that induce and maintain primary immune responses in vitro and in vivo. The development of protocols for the ex vivo generation of DCs provided a rationale for designing and developing DC-based vaccination studies for the treatment of infectious and malignant diseases. Recently, it was shown that DCs transfected with ribonucleic acid (RNA) coding for a tumour-associated antigen or whole tumour RNA are able to induce potent antigen and tumour-specific T-cell responses directed against multiple epitopes. The first RNA-transfected-DC-based clinical studies have shown that this form of vaccination is feasible and safe. In some cases, clinical responses were observed, but the preliminary data require further extensive investigations that should address the technical and biological problems of manipulating human DCs, as well as the development of standardised protocols and definitions of clinical settings.  相似文献   

9.
10.
11.
The blood–brain barrier (BBB) is essential for maintaining homeostasis within the central nervous system (CNS) and is a prerequisite for proper neuronal function. The BBB is localized to microvascular endothelial cells that strictly control the passage of metabolites into and out of the CNS. Complex and continuous tight junctions and lack of fenestrae combined with low pinocytotic activity make the BBB endothelium a tight barrier for water soluble moleucles. In combination with its expression of specific enzymes and transport molecules, the BBB endothelium is unique and distinguishable from all other endothelial cells in the body. During embryonic development, the CNS is vascularized by angiogenic sprouting from vascular networks originating outside of the CNS in a precise spatio-temporal manner. The particular barrier characteristics of BBB endothelial cells are induced during CNS angiogenesis by cross-talk with cellular and acellular elements within the developing CNS. In this review, we summarize the currently known cellular and molecular mechanisms mediating brain angiogenesis and introduce more recently discovered CNS-specific pathways (Wnt/β?catenin, Norrin/Frizzled4 and hedgehog) and molecules (GPR124) that are crucial in BBB differentiation and maturation. Finally, based on observations that BBB dysfunction is associated with many human diseases such as multiple sclerosis, stroke and brain tumors, we discuss recent insights into the molecular mechanisms involved in maintaining barrier characteristics in the mature BBB endothelium.  相似文献   

12.
VAP-A is a major endoplasmic reticulum (ER) receptor that allows this organelle to engage numerous membrane contact sites with other organelles. One highly studied example is the formation of contact sites through VAP-A interaction with Oxysterol-binding protein (OSBP). This lipid transfer protein transports cholesterol from the ER to the trans-Golgi network owing to the counter-exchange of the phosphoinositide PI(4)P. In this review, we highlight recent studies that advance our understanding of the OSBP cycle and extend the model of lipid exchange to other cellular contexts and other physiological and pathological conditions.  相似文献   

13.
Alkylresorcinols are members of an extensive family of bioactive compounds referred to as phenolic lipids, which occur primarily in plants, fungi and bacteria. In plants, alkylresorcinols and their derivatives are thought to serve important roles as phytoanticipins and allelochemicals, although direct evidence for this is still somewhat lacking. Specialized type III polyketide synthases (referred to as ‘alkylresorcinol synthases’), which catalyze the formation of 5-alkylresorcinols using fatty acyl-CoA starter units and malonyl-CoA extender units, have been characterized from several microbial species; however, until very recently little has been known concerning their plant counterparts. Through the use of sorghum and rice EST and genomic data sets, significant inroads have now been made in this regard. Here we provide additional information concerning our recent report on the identification and characterization of alkylresorcinol synthases from Sorghum bicolor and Oryza sativa, as well as a brief consideration of the emergence of this intriguing subfamily of enzymes.Key words: alkylresorcinol, polyketide synthase, alkylresorcinol synthase, phenolic lipid, antifungal  相似文献   

14.
Sexual reproduction is achieved by precise interactions between male and female reproductive organs. In plant fertilization, sperm cells are carried to ovules by pollen tubes. Signals from the pistil are involved in elongation and control of the direction of the pollen tube. Genetic, reverse genetic, and cell biological analyses using model plants have identified various factors related to the regulation of pollen tube growth and guidance. In this review, I summarize the mechanisms and molecules controlling pollen tube growth to the ovule, micropylar guidance, reception of the guidance signal in the pollen tube, rupture of the pollen tube to release sperm cells, and cessation of the tube guidance signal. I also briefly introduce various techniques used to analyze pollen tube guidance in vitro.  相似文献   

15.
Summary Recent pollination experiments with highly irradiated (100,000 r) pollen in Nicotiana have shown that radiation-pulverized pollen chromatin can cause genetic transformation of the egg. A new model is proposed here for integration of chromatin fragments into host chromosomes. It is also proposed that heterochromatin may be involved in the process of gene transfer, and in the phenomena of meiotic drive associated with gene transfer.It is suggested that this discovery throws new light on the phenomenon of graft-hybridization. In spite of many reports to the contrary, graft-hybrids have so far been explained only on the basis of their being chimaeras. A mechanism is suggested here by which they may result from genetic transformation.  相似文献   

16.
Earlier, we reported the impact of season on neutrophils’ functional competence and also hypothesized that it could be the impact of different seasons on neutrophils’ activation. In cerebration, the present study aimed to provide insights into neutrophils’ activation in terms of phosphorylation of tyrosine containing proteins during different seasons. Ten Hariana cows participated in the study and eight times blood samples were collected from each animal (twice in each month) during each season. Phosphorylation of tyrosine proteins was evaluated using western blotting and immunolocalization using a fluorescent microscope. Immuno blotting identified six tyrosine-phophorylated proteins p28, p42, p44, p58, p84, and p104 in winter and rainy seasons, whereas, p84 protein was absent in summer season. Immunolocalization revealed positive immune reactivity (IR) for tyrosine-phosphorylated proteins and significantly (p < 0.05) lower percent of neutrophils showed positive IR during the summer season as compared to winter and rainy seasons. The results of the study evidently indicate the activation of neutrophils is mediated through tyrosine phosphorylation and this may be a probable reason behind the decreased neutrophils’ functional competence during the summer. Further studies are warranted to decipher the possible association between tyrosine phosphorylation and expression of surface receptors required for the recruitment of neutrophils.  相似文献   

17.
Alzheimer’s disease (AD) is the leading cause of dementia. The two histopathological markers of AD are amyloid plaques composed of the amyloid-β (Aβ) peptide, and neurofibrillary tangles of aggregated, abnormally hyperphosphorylated tau protein. The majority of AD cases are late-onset, after the age of 65, where a clear cause is still unknown. However, there are likely different multifactorial contributors including age, enviornment, biology and genetics which can increase risk for the disease. Genetic predisposition is considerable, with heritability estimates of 60–80%. Genetic factors such as rare variants of TREM2 (triggering receptor expressed on myeloid cells-2) strongly increase the risk of developing AD, confirming the role of microglia in AD pathogenesis. In the last 5 years, several studies have dissected the mechanisms by which TREM2, as well as its rare variants affect amyloid and tau pathologies and their consequences in both animal models and in human studies. In this review, we summarize increases in our understanding of the involvement of TREM2 and microglia in AD development that may open new therapeutic strategies targeting the immune system to influence AD pathogenesis.  相似文献   

18.
19.
20.
Cell wall extensibility controls the rate of plant cell growth. It is determined by intrinsic mechanical properties of wall polymers and by wall proteins modifying these polymers and their interactions. Heat-inactivation of endogenous cell wall proteins inhibited acid-induced extension of onion epidermis peels transverse to the net cellulose alignment in the cell wall but not parallel to it. In the former case the acid-induced extension could be controlled by expansins and in the latter case by pectins restricting shear between microfibrils. Heat-inactivated cell walls stretched transversely to the net cellulose orientation extended faster at pH 5.7 and slower at pH 4.5 compared to native walls. Expansins seem to be inactive at pH 5.7, so that faster extension may result from heat-induced viscous flow of pectins and conformational changes in the cuticle of the epidermis. This stimulation of wall extension is not seen at pH 4.5 as it is outweighed by the inhibitory effect of expansin heat-inactivation. Thus, cell wall extension in higher plants might be controlled by a complex interplay between protein-dependent and protein-independent mechanisms, the result of which depends on pH and preferential orientation of main wall polymers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号