首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 218 毫秒
1.
含神经酸植物的研究   总被引:12,自引:0,他引:12  
对自然界中植物果实的含油量、神经酸含量等进行了比较研究 .研究结果认为 ,在目前发现的 31种含有神经酸的植物中 ,蒜头果、盾叶木和遏蓝菜果实含油量高、且富含神经酸 ,是目前较为理想的开发神经酸产品的植物资源  相似文献   

2.
对自然界中植物果实的含油量、神经酸含量等进行了比较研究。研究结果认为,在目前发现的31种含有神经酸的植物中,蒜头果、盾叶木和遏蓝菜果实含油量高、且富含神经酸,是目前较为理想的开发神经酸产品的植物资源。  相似文献   

3.
植物矮化突变体的来源及矮化机理研究进展   总被引:2,自引:0,他引:2  
植物矮化是一种重要的农艺学性状,是生命科学领域研究的重要内容之一,矮化研究是植物育种工作的热点。矮化来源分为诱变矮化和自发矮化,其中诱变矮化中的物理诱变研究的内容分类详细,在航天诱变领域取得了有效的研究成果。植物矮化机理的研究主要集中于植物内源激素,主要是赤霉素、油菜素内酯,也有少量关于生长素的研究。针对不同种类植物具体详细的矮化机理,还没有明确的分类和细化的研究。总结了植物矮化突变体的来源及矮化机理。  相似文献   

4.
丽春红2R—亮绿染色法在显示神经髓鞘中的应用   总被引:1,自引:0,他引:1  
任何因素所致的神经损伤 ,均可导致髓鞘的变性、髓鞘的脱失程度。常规髓鞘染色多采用传统的苏木素及锇酸染色法。苏木素法染色时间过长 (约 2 4h) ,染色步骤复杂 ,温度需控制在 5 0~ 5 5℃ ,分化时由于分化液作用速度较快 ,不便于掌握 ,易造成染色失败 ;而锇酸价格昂贵 ,浸透性差。这样将使神经组织的病理诊断及研究受到很大影响。为此 ,我们根据神经髓鞘的组织结构特点及染色原理 ,采用丽春红 2 R-亮绿组织化学染色方法 ,收到了满意的效果。材料和方法1.标本来源 :活检、尸检及动物正常或病变的脑组织、脊髓和周围神经组织 ,均经福尔马林…  相似文献   

5.
油菜油脂研究进展   总被引:12,自引:0,他引:12  
油菜(Brassica napus)是世界范围内重要的油料作物,是植物油脂的第三大来源,其种植面积和总产量在油料作物中占有相当大的比例。我国油菜品种油脂含量普遍较国外低2—5个百分点,而油脂含量每增加1个百分点对产油量提高的贡献,相当于菜籽产量提高2.5个百分点。因此提高油菜油脂含量是解决油菜生产效益低的重要途径之一。本文综述了油菜油脂研究的状况,包括油脂积累的遗传学基础、油脂合成途径和调控、油脂含量的QTL定位及油脂含量与品质性状的遗传相关性,同时展望了油菜油脂研究前景,以期为油菜油脂含量的品种改良提供科学指导。  相似文献   

6.
油菜(Brassica napus)是世界范围内重要的油料作物, 是植物油脂的第三大来源, 其种植面积和总产量在油料作物中占有相当大的比例。我国油菜品种油脂含量普遍较国外低2-5个百分点, 而油脂含量每增加1个百分点对产油量提高的贡献, 相当于菜籽产量提高2.5个百分点。因此提高油菜油脂含量是解决油菜生产效益低的重要途径之一。本文综述了油菜油脂研究的状况, 包括油脂积累的遗传学基础、油脂合成途径和调控、油脂含量的QTL定位及油脂含量与品质性状的遗传相关性, 同时展望了油菜油脂研究前景, 以期为油菜油脂含量的品种改良提供科学指导。  相似文献   

7.
胡留成  崔巍  汪霞  娄永根 《昆虫学报》2010,53(9):1001-1008
植物在受植食性昆虫为害时能产生防御反应,并且植物的茉莉酸信号转导途径在这一过程中发挥着重要作用。然而, 迄今为止对于油菜Brassica campestris的诱导防御反应很少有研究报道。为此, 本实验通过测定油菜内茉莉酸和胰蛋白酶抑制剂含量研究了油菜在斜纹夜蛾Spodoptera litura幼虫为害后的抗虫性和胰蛋白酶抑制剂含量的变化,并分析这些变化在油菜诱导抗虫性与茉莉酸信号转导途径中的关系。结果表明:斜纹夜蛾幼虫取食能导致油菜体内茉莉酸和胰蛋白酶抑制剂含量系统性上升,外用茉莉酸甲酯处理也能系统性增加油菜的胰蛋白酶抑制剂含量,并且取食茉莉酸甲酯处理或斜纹夜蛾幼虫取食过的叶片能显著降低斜纹夜蛾幼虫的体重,两者的体重分别为对照植株上的67.5%和60.2%。机械损伤加斜纹夜蛾幼虫口腔分泌物处理能引起处理叶中茉莉酸和胰蛋白酶抑制剂含量的增加,但其诱导效果与机械损伤加水没有显著差异,并且两者明显低于虫害的诱导效果,两种处理的茉莉酸和胰蛋白酶抑制剂含量分别为虫害诱导的68.4%和24.4%及62.9%和36.9%;多次连续机械损伤的诱导效果与一次损伤的没有明显差异。结果说明斜纹夜蛾幼虫诱导的油菜抗虫性与茉莉酸信号转导途径有关,而其激活油菜抗虫反应的机理则可能与其特定的取食行为相关。  相似文献   

8.
四、种群间的体细胞杂种对于育种家来说,最期望的是通过原生质体融合,把优良性状转移到那些不亲和性的物种中去.在十字花科植物中,我们已经选择了山芥(Barbarea vulgaris)和穿叶遏蓝菜(Thlaspi perfoliatum)作为融合油菜的亲本.因为山芥属植物具有抗寒性,遏蓝菜属植物含有一种可以用作润滑剂的神经酸.它们与拟南芥芸苔杂种不同,其分离杂种的原生质体愈伤组织容易再生成苗,而在发根和幼苗移栽方面较困难.  相似文献   

9.
我国部分农田存在重金属镉(Cd)污染问题, 油菜作为一种Cd富集植物, 表现出一定的植物修复潜力, 近年来得到广泛的关注和研究。简要介绍了农田土壤Cd污染现状、来源、存在形式和危害, 阐述了油菜修复Cd污染土壤的潜力及其可能的生理机制重点围绕“植物-土壤”系统, 综述了影响和增强油菜修复能力的生物措施、土壤管理措施和其他农艺措施, 并分析其作用机制。在此基础上, 提出了未来需要关注的研究方向。  相似文献   

10.
山楂酸是一种五环三萜酸,存在于多种天然植物、特别是油橄榄中,对人体具有高安全性。近年来发现山楂酸具有抗癌、抗氧化、抗艾滋病、抗菌、抗糖尿病等多种生物活性,从而引起了人们的研究兴趣。本文对山楂酸的来源和药理活性进行了简要综述。  相似文献   

11.
神经酸是大脑神经细胞和组织中的一种核心天然成分,具有特殊的生物学功能, 对人体健康尤其是脑健康起到至关重要的作用。综述神经酸的生物功能和作用机制、神经酸的制备(包括从元宝枫油中提取分离、化学合成及转基因生物合成)以及神经酸在预防和治疗脑病(包括多发性硬化症、肾上腺脑白质营养不良、Zellweger 综合征、阿尔茨海默病等)中的应用研究进展。  相似文献   

12.
Nervonic acid 24:1 Δ15 ( cis -tetracos-15-enoic acid) is a very long-chain monounsaturated fatty acid and exists in nature as an elongation product of oleic acid. There is an increasing interest in production of high nervonic acid oils for pharmaceutical, nutraceutical and industrial applications. Using a polymerase chain reaction approach, we have isolated a gene from Cardamine graeca L., which encodes a 3-ketoacyl-CoA synthase (KCS), the first component of the elongation complex involved in synthesis of nervonic acid. Expression of the Cardamine KCS in yeast resulted in biosynthesis of nervonic acid, which is not normally present in yeast cells. We transformed Arabidopsis and Brassica carinata with the Cardamine KCS under the control of the seed-specific promoter, napin. The T3 generations of transgenic Arabidopsis and B. carinata plants expressing the Cardamine KCS showed that seed-specific expression resulted in relatively large comparative increases in nervonic acid proportions in Arabidopsis seed oil, and 15-fold increase in nervonic acid proportions in B. carinata seed oil. The highest nervonic acid level in transgenic B. carinata lines reached 44%, with only 6% of residual erucic acid. In contrast, similar transgenic expression of the Cardamine KCS in high erucic B. napus resulted in 30% nervonic acid but with 20% residual erucic acid. Experiments using the Lunaria KCS gene gave results similar to the latter. In both cases, the erucic acid content is too high for human or animal consumption. Thus, the Cardamine KCS: B. carinata high nervonic/highly reduced erucic transgenic seed oils will be the most suitable for testing in pharmaceutical/nutraceutical applications to improve human and animal health.  相似文献   

13.
14.
Very long chain fatty acids (VLCFAs) with chain lengths of 20 carbons and longer provide feedstocks for various applications; therefore, improvement of VLCFA contents in seeds has become an important goal for oilseed enhancement. VLCFA biosynthesis is controlled by a multi-enzyme protein complex referred to as fatty acid elongase, which is composed of β-ketoacyl-CoA synthase (KCS), β-ketoacyl-CoA reductase (KCR), β-hydroxyacyl-CoA dehydratase (HCD) and enoyl reductase (ECR). KCS has been identified as the rate-limiting enzyme, but little is known about the involvement of other three enzymes in VLCFA production. Here, the combinatorial effects of fatty acid elongase enzymes on VLCFA production were assessed by evaluating the changes in nervonic acid content. A KCS gene from Lunaria annua (LaKCS) and the other three elongase genes from Arabidopsis thaliana were used for the assessment. Five seed-specific expressing constructs, including LaKCS alone, LaKCS with AtKCR, LaKCS with AtHCD, LaKCS with AtECR, and LaKCS with AtKCR and AtHCD, were transformed into Camelina sativa. The nervonic acid content in seed oil increased from null in wild type camelina to 6-12% in LaKCS-expressing lines. However, compared with that from the LaKCS-expressing lines, nervonic acid content in mature seeds from the co-expressing lines with one or two extra elongase genes did not show further increases. Nervonic acid content from LaKCS, AtKCR and AtHCD co-expressing line was significantly higher than that in LaKCS-expressing line during early seed development stage, while the ultimate nervonic acid content was not significantly altered. The results from this study thus provide useful information for future engineering of oilseed crops for higher VLCFA production.  相似文献   

15.
Protoplast fusions were performed between hypocotyl protoplasts of Brassica napus and mesophyll protoplasts of Thlaspi perfoliatum. The two species are members of the Lepidieae and Brassiceae tribes, respectively, in the family of Brassicaceae. Seeds of T. perfoliatum are rich in the fatty acid C241 (nervonic acid), an oil valuable for technical purposes. In the search for renewable oils to replace the mineral oils, plant breeders have been trying to develop oil crops with a high content of long-chain fatty acids. After fusion of B. napus protoplasts with non-irradiated as well as irradiated protoplasts of T. perfoliatum selection was carried out by flow cytometry and cell sorting. Of the shoots regenerated from different calli 27 were verified as hybrids or partial hybrids using the isoenzyme phosphoglucose isomerase (PGI) as a marker. Another 6 plants were identified as partial hybrids using a T. perfoliatum-specific repetitive DNA sequence. Slot blot experiments were performed to estimate the copy number of the repetitive DNA sequence in the parental species and in the hybrids. In T. perfoliatum there were approximately 105 copies per haploid genome, and the range in the hybrids was 1–37% of the value in T. perfoliatum. When the nuclear DNA content of the regenerated shoots was analysed we found partial as well as symmetric hybrids. Even though the rooting and establishment of hybrid shoots in the greenhouse were difficult, resulting in the death of many plants, 19 plants were cultured to full maturity. Seeds obtained from 15 plants were analysed to determine whether they contained nervonic acid, and 5 of the hybrids were found to contain significantly greater amounts of nervonic acid than B. napus.  相似文献   

16.
Summary The progress in the development of the technologies of plant tissue and cell culture over the past four decades has been remarkable. This article covers my personal reflections on the various topics and is based on my involvement in the field during that period. There are three fundamental technologies which constitute most of what is referred to as plant in vitro technologies or tissue culture. The origin and some of the key persons involved in the development of each of these procedures will be discussed. The technology that is most common is growing plant tissue on gel-solidified nutrient media. That technology is being used in the most vital procedures, namely the regeneration of plants from cultured cells. The culture of plant cells in liquid suspension was developed very shortly after that, and has become a very effective technology for plant regeneration by somatic embryogenesis. The method of meristem culture arose out of a need for developing plants that were virus-free. In many species the technique is now being used to produce virus-free crop plants. Another important technology is the culture of anthers and microspores for producing haploid and homozygous plants. Included with plant tissue culture is the development of the plant protoplast and cell fusion technologies for the production of new plant hybrids. The final aspect of the development concerns the integration of tissue culture with molecular genetics, which has developed into the rapidly expanding field of biotechnology.  相似文献   

17.
We examined effects of exogenous very-long-chain fatty acids on lipids of cultured chick neurons and astrocytes. When chick neurons were incubated in chemically defined medium containing 10 microM nervonic acid (C24:1) for 7 days, it was found that a major fatty acid moiety of gangliosides and sphingomyelin was nervonic acid itself, which was not normally detected in the sphingolipid fraction. This alteration in the fatty acid composition apparently occurred in each ganglioside species. Under these experimental conditions, nervonic acid was not found in the glycerophospholipid fraction, and the amounts of triacylglycerol and free nervonic acid increased. Addition of behenic acid (C22:0) or erucic acid (C22:1) also induced changes in the fatty acid composition of gangliosides. When chick astrocytes were incubated in the presence of 10 microM nervonic acid for 7 days, no significant change was observed in the fatty acid composition of gangliosides. These studies indicate that the manipulation of the fatty acid moiety of sphingolipids in cultured neurons is possible.  相似文献   

18.
The chemical nature of fatty acids was studied on sphingomyelin which was prepared from horse spinal cord. Nervonic, palmitic, stearic and behenic acids were isolated from the hydrolysate of the sphingomyelin preparation. The presence of behenic acid in sphingomyelin has in this paper been reported for the first time.  相似文献   

19.
Fatty acid composition and thermal behavior of natural sphingomyelins   总被引:4,自引:0,他引:4  
We found significant differences in the fatty acid composition of several bovine brain, egg yolk and sheep erythrocyte sphingomyelins. These differences in fatty acid composition influence the thermal behavior of hydrated sphingomyelin as recorded by differentail scanning calorimetry. Significant differences were also found in the temperature and complexity of the order-disorder phase transitions of bovine brain sphingomyelin obtained from different sources which, in general, correlate with the relative content of the saturated fatty acids (palmitic (C16:0) and stearic acid (C18:0) acids) and the long unsaturated nervonic acid (C24:1).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号