首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
    
《Trends in plant science》2015,20(4):206-211
  相似文献   

2.
3.
    
  相似文献   

4.
【目的】解析不同耕作措施下的土壤真菌群落组成以及病原真菌生态网络特征,为了解真菌在维持和改善农业生态系统稳定性方面提供科学依据。【方法】通过高通量测序技术,对传统犁耕(moldboard plow,MP)和保护性耕作[少耕(reduced tillage,RT)、免耕(no-tillage,NT)]下根际和非根际土壤中真菌群落的组成、多样性和真菌病原菌的关联网络特征进行了综合分析。【结果】与NT对比,MP和RT显著增加了土壤全碳(total carbon,TC)、全氮(total nitrogen,TN)和速效钾(available potassium,AK)的含量。根际效应对真菌群落的影响显著高于耕作措施。根际土壤中,RT处理的Shannon指数显著高于MP和NT。NT和RT处理显著降低了根际土壤中镰孢菌(Fusarium)和链格孢菌(Alternaria)的相对丰度。此外,RT降低了病原真菌的网络复杂性、减少了病原菌与其他真菌间的交互作用,增强了网络稳定性。【结论】保护性耕作RT是具有增加土壤养分、提升真菌网络稳定性且具有减轻病原菌有效传播作用的最佳耕作模式,为东北地区的耕作应用提供了新的视角。  相似文献   

5.
禾草内生真菌在宿主植物的茎叶等地上组织中普遍存在,不仅能够提高禾草对生物与非生物逆境的抗性,而且能够对周围环境中的不同微生物类群产生影响。主要总结了禾草Neotyphodium/Epichlo内生真菌对病原真菌、丛枝菌根真菌和土壤微生物的影响及其作用机理。发现禾草内生真菌普遍存在对病原真菌的抑制作用,而对丛枝菌根真菌存在不对称的竞争作用,且因种类而异。禾草内生真菌对土壤微生物群落的作用则会随着土壤类型和时间等外界因素发生变化。禾草内生真菌对不同类群微生物的影响机制主要包括:通过生态位竞争、抑菌物质分泌、诱导抗病性等对病原真菌造成影响;通过根系化学物质释放、营养元素调节、侵染条件差异等对丛枝菌根真菌造成影响;通过根际沉积物和凋落物等对土壤微生物群落造成影响。禾草内生真菌产生的生物碱能提高宿主植物对包括昆虫在内草食动物采食的抗性,影响病原菌的侵入、定殖和扩展;根组织分泌物中包含次生代谢产物能够抑制菌根真菌、土传病原真菌及其它土壤微生物的侵染与群落组成;也可能通过次生代谢物影响禾草的其它抗性。因此,禾草内生真菌在植物-微生物系统中的作用应该给予更多的关注和深入研究。  相似文献   

6.
    
Multitrophic interactions play key roles in the origin and maintenance of species diversity, and the study of these interactions has contributed to important theoretical advances in ecology and evolutionary biology. Nevertheless, most biodiversity inventories focus on static species lists, and prominent theories of diversity still ignore trophic interactions. The lack of a simple interaction metric that is analogous to species richness is one reason why diversity of interactions is not examined as a response or predictor variable in diversity studies. Using plant–herbivore–enemy trophic chains as an example, we develop a simple metric of diversity in which richness, diversity indices (e.g., Simpson's 1/D), and rarefaction diversity are calculated with links as the basic unit rather than species. Interactions include all two-link (herbivore–plant and enemy–herbivore) and three-link (enemy–herbivore–plant) chains found in a study unit. This metric is different from other indices, such as traditional diversity measures, connectivity and interaction diversity in food-web studies, and the diversity of interaction index in behavioral studies, and it is easier to compute. Using this approach to studying diversity provides novel insight into debates about neutrality and correlations between diversity, stability, productivity, and ecosystem services.  相似文献   

7.
采用氯仿熏蒸浸提法和Biolog法,分析环丙沙星作用下的土壤微生物量碳和微生物群落碳代谢多样性,以揭示环丙沙星在环境中残留对土壤微生物学性状的影响.结果表明,环丙沙星(wCIP≥0.1 μg/g)对土壤微生物量碳含量影响显著(P<0.05),土壤中环丙沙星浓度愈高,微生物量碳含量愈低,100μg/g的环丙沙星处理使土壤微生物量碳含量下降58.69%.环丙沙星对土壤微生物群落碳代谢功能影响显著,环丙沙星降低了土壤微生物对碳水化合物、羧酸、氨基酸、聚合物、酚类和胺类的碳源利用率;环丙沙星(wCIP≥0.1 μg/g)显著影响了土壤微生物群落碳源代谢强度和代谢多样性,但不同浓度的环丙沙星对土壤微生物群落碳代谢功能的影响不同,0.1、1、10 μg/g的环丙沙星处理对土壤微生物群落碳代谢功能的影响主要表现在处理前期(用药第7天、21天),这种影响在处理后期(用药第35天)表现不明显,100μg/g的环丙沙星在用药的前期和后期均显著影响土壤微生物群落碳代谢功能,土壤中环丙沙星积累到该浓度可能对土壤微生物群落碳代谢功能产生难以逆转的长期影响.  相似文献   

8.
Plant-mediated soil legacy effects can be important determinants of the performance of plants and their aboveground insect herbivores, but, soil legacy effects on plant–insect interactions have been tested for only a limited number of host plant species and soils. Here, we tested the performance of a polyphagous aboveground herbivore, caterpillars of the cabbage moth Mamestra brassicae, on twelve host plant species that were grown on a set of soils conditioned by each of these twelve species. We tested how growth rate (fast- or slow-growing) and functional type (grass or forb) of the plant species that conditioned the soil and of the responding host plant species growing in those soils affect the response of insect herbivores to conditioned soils. Our results show that plants and insect herbivores had lower biomass in soils that were conditioned by fast-growing forbs than in soils conditioned by slow-growing forbs. In soils conditioned by grasses, growth rate of the conditioning plant had the opposite effect, i.e. plants and herbivores had higher biomass in soils conditioned by fast-growing grasses, than in soils conditioned by slow-growing grasses. We show that the response of aboveground insects to soil legacy effects is strongly positively correlated with the response of the host plant species, indicating that plant vigour may explain these relationships. We provide evidence that soil communities can play an important role in shaping plant–insect interactions aboveground. Our results further emphasize the important and interactive role of the conditioning and the response plant in mediating soil–plant–insect interactions.  相似文献   

9.
花生与药材套种对土壤微生物区系的影响   总被引:3,自引:0,他引:3  
通过茅苍术、京大戟、黄姜(盾叶薯蓣)、半夏和阔叶麦冬5种药用植物与花生套种的盆栽试验,测定了不同时期花生土壤中的细菌、放线菌、霉菌和酵母菌数量,探讨利用药用植物套种花生缓解花生连作障碍的可行性.结果表明:茅苍术组和京大戟组抑制土壤霉菌效果最好,在花生花针期分别比对照组减少了53.87%和29.59%;在花生收获后的土壤中霉菌数量增加,有利于物质循环和养分还田.茅苍术、京大戟和半夏组土壤中细菌数量增加. 在花生花针期,5种药用植物套作组土壤中酵母菌数量均高于对照.霉菌形态鉴定结果表明,在茅苍术、京大戟和黄姜套作组中均未检测出花生常见病原菌.药用植物和花生套种可以有效调节土壤微生物区系.  相似文献   

10.
The idea that herbaceous plants have higher relative growth rates (RGRs) compared with woody plants is fundamental to many of the most influential theories in plant ecology. This difference in growth rate is thought to reflect systematic variation in physiology, allocation and leaf construction. Previous studies documenting this effect have, however, ignored differences in seed mass. As woody species often have larger seeds and RGR is negatively correlated with seed mass, it is entirely possible the lower RGRs observed in woody species is a consequence of having larger seeds rather than different growth strategies. Using a synthesis of the published literature, we explored the relationship between RGR and growth form, accounting for the effects of seed mass and study-specific effects (e.g. duration of study and pot volume), using a mixed-effects model. The model showed that herbaceous species do indeed have higher RGRs than woody species, and that the difference was independent of seed mass, thus at all seed masses, herbaceous species on average grow faster than woody ones.  相似文献   

11.
    
ABSTRACT

Background: Giant rosettes constitute one of the most distinctive growth-forms in tropical alpine ecosystems. However, their interactions with other plant species remain unexplored in high Andean páramos.

Aims: Quantify the effect of a dominant rosette (Coespeletia timotensis) on soil and microclimatic conditions and relate the impacts to plant community structure.

Methods: We analysed topsoil temperatures, soil organic matter (SOM) and plant species cover in areas adjacent to C. timotensis and paired areas outside, at three sites (4250–4360 m a.s.l.) in La Culata National Park, Venezuela. Species richness, total vegetation cover and percent cover of each species near and away from the rosettes were compared.

Results: Topsoil temperature amplitudes were lower and SOM greater near C. timotensis stems, compared to areas away from them. C. timotensis had a consistent positive effect on species richness, vegetation cover and the cover of many abundant species (including cushions and herbs).

Conclusions: The facilitation effects of C. timotensis on abiotic conditions and community structure indicate they play a key role as nurse plants, pointing to giant rosettes as foundation species for the maintenance of plant diversity in the alpine tropics.  相似文献   

12.
13.
云纹石斑鱼幼鱼血清生化指标对低温胁迫的响应   总被引:2,自引:0,他引:2  
设置9、13、17℃3个温度梯度(17℃对照组),对云纹石斑鱼(Epinephelus moara)幼鱼进行7 d的胁迫实验,检测了血清中生化指标和代谢酶活力。结果表明:血清总蛋白(TP)和葡萄糖(GLU)含量在温度骤降后虽有变化,但无显著性差异(P0.05);血清中甘油三酯(TG)和肌酐(CREA)含量在水温骤降至9℃和13℃,7 d后与胁迫前比较均差异显著(P0.05);代谢酶指标中碱性磷酸酶(AKP)、谷草转氨酶(GOT)、谷丙转氨酶(GPT)和乳酸脱氢酶(LDH)的活力,随低温胁迫的强度和胁迫时间的延长活力都呈上升趋势,且实验结束时均与胁迫前差异显著(P0.05);乳酸脱氢酶活力在实验结束时各低温胁迫实验组之间也有显著性差异(P0.05);研究认为,在耐受温度范围的下限云纹石斑鱼幼鱼遭受低温骤降胁迫时,短期内血清生化指标不发生显著变化;幼鱼通过血清代谢酶活力的升高来响应低温胁迫,以提高抗应激能力;但停食会导致免疫力和抗氧化能力下降,因此实际生产中仍应降低胁迫强度和缩短胁迫时间。  相似文献   

14.
Plant–plant interactions change depending on environmental conditions, shifting from competition to facilitation when the stress is high. In addition to these changes, the relevance of intraspecific compared to interspecific interactions may also shift as abiotic stress does. We inferred intra- and interspecific plant–plant interactions of the cushion plant Hormathophylla spinosa as related to the dominant shrub Juniperus sabina in two sites with contrasting abiotic conditions (a slope with high-stress conditions vs. a valley bottom with milder conditions) in a Mediterranean high mountain. Specifically, we studied the spatial patterns and several variables related to plant performance (plant size and form, non-structural carbohydrate – NSC – concentrations and radial growth) of H. spinosa.The spatial pattern varied depending on site conditions. H. spinosa plants were positively associated with juniper in the high-stress slope site, probably through higher establishment rates due to the amelioration of soil conditions. In contrast, in the milder valley site H. spinosa establishment occurred mostly in open areas. Age structure, inferred from annual rings, reflected a massive establishment event in the whole study area which occurred 30–50 years ago. Canopy variables and radial growth were density dependent: both were negatively affected by the high density of H. spinosa individuals in the valley, but favoured by junipers on the slope. Interestingly, NSCs showed the opposite pattern, suggesting lower investment in growth by H. spinosa plants in the valley than on the slope.Our results reinforce the strong links existing between intra- and interspecific relationships and the need to include both when studying the influence of abiotic conditions on plant–plant interactions. This approach enabled us to detect that the direction and intensity of plant–plant interactions may shift at different ecological levels. Particularly interesting was the finding that optimal sites at the population level may not necessarily be the sites showing maximum individual performance.  相似文献   

15.
16.
An evaluation of microbial DNA pools was performed using direct quantitative isolation of DNA from contemporary soils of Southern Urals and paleosols sealed under burial mounds early in the Bronze Age more than 5000 years B.P. Significant regression dependence was found between the biomass and DNA contents in these soils (R 2= 0.97). Activity and dominant ecological strategies of microbial communities of paleosols and contemporary southern black soil were compared from growth parameters obtained by analysis of respiratory curves. The ratio of maximum specific growth rates of soil microorganisms on glucose and on yeast extract was shown to provide an auxotrophy index for soil microbial communities.  相似文献   

17.
    
Sustainability and a more environment-friendly approach is an emerging issue relevant to crop production. Abiotic stresses like drought, salinity, heat, cold or heavy metal pollution can severely compromise yields, and in this respect, plant protection practices should be highly efficient as well as safe for the environment and people. Among the many ways to achieve high productivity of healthy, safe and tasty food, the use of beneficial micro-organisms as biostimulants is the most promising one. Two types of soil fungi can be considered efficient natural plants stimulants: arbuscular mycorrhizal fungi (AMF) and Trichoderma spp. (TR). Generally, most investigations indicated AMF and TR were effective, as well as safe, for use as natural biopreparations dedicated to horticultural crops, although some reports pointed to their negative impact on plants. This review focuses on the mutual interaction of AMF and TR, as well as complex relationships with plants analysed on a multidimensional level: biochemical, morphological, ecological and agrotechnical. AMF and TR were found to be effective elicitors of root system development, nutrient uptake, plant stress response and production of secondary metabolites. As natural plant stimulants, beneficial fungi are compatible with modern trends of crop management, environmental conservation and functional food production. Herein, we demonstrate the advantages and disadvantages of AMF and TR use in horticulture and their prospects, as well as the points that need further exploring.  相似文献   

18.
In a greenhouse experiment, five ornamental plants, Osmanthus fragrans (OF), Ligustrum vicaryi L. (LV), Cinnamomum camphora (CC), Loropetalum chinense var. rubrum (LC), and Euonymus japonicas cv. Aureo-mar (EJ), were studied for the ability to phytostabilization for Cd-contaminated soil. The results showed that these five ornamental plants can grow normally when the soil Cd content is less than 24.6 mg·kg?1. Cd was mainly deposited in the roots of OF, LV, LC and EJ which have grown in Cd-contaminated soils, and the maximum Cd contents reached 15.76, 19.09, 20.59 and 32.91 mg·kg?1, respectively. For CC, Cd was mainly distributed in the shoots and the maximum Cd content in stems and leaves were 12.5 and 10.71 mg·kg?1, however, the total amount of Cd in stems and leaves was similar with the other ornamental plants. The enzymatic activities in Cd-contaminated soil were benefited from the five tested ornamental plants remediation. Soil urease and sucrase activities were improved, while dehydrogenase activity was depressed. Meanwhile, the soil microbial community was slightly influenced when soil Cd content is less than 24.6 mg·kg?1 under five ornamental plants remediation. The results further suggested that ornamental plants could be promising candidates for phytostabilization of Cd-contaminated soil.  相似文献   

19.
Trophic interactions between bacteria, viruses, and protozoan predators play crucial roles in structuring aquatic microbial communities and regulating microbe-mediated ecosystem functions (biogeochemical processes). In this microbial food web, protozoan predators and viruses share bacteria as a common resource, and protozoan predators can kill viruses [intraguild predation (IGP)] and vice versa, even though these latter processes are probably of less importance. However, protozoan predators (IG predator) and viruses (IG prey) generally occur together in various environments, and this cannot be fully explained by the classic IGP models. In addition, controlled experiments have often demonstrated that protozoan predators have apparently positive effects on viral activity. These surprising patterns can be explained by indirect interactions between them via induced trait changes in bacterial assemblages, which can be compared with trait-mediated indirect interactions (TMIIs) in terrestrial plant–insect systems. Here, we review some trait changes in bacterial assemblages that may positively affect the activities and abundance of viruses. It has been suggested that in bacterial assemblages, protozoan predation may enhance growth conditions for individual bacteria and induce both phenotypic trait changes at the individual (e.g., filament-forming bacteria) and group level as a result of changes in bacterial community composition (e.g., species dominance). We discuss the specificities of aquatic microbial systems and attempt find functional similarities between aquatic microbial systems and terrestrial plant–insect systems with regard to TMII function.  相似文献   

20.
    
The cultivation of legumes shows promise for the development of sustainable agriculture, but yield instability remains one of the main obstacles for its adoption. Here, we tested whether the yield stability (i.e., resistance and resilience) of pea plants subjected to drought could be enhanced by soil microbial diversity. We used a dilution approach to manipulate the microbial diversity, with a genotype approach to distinguish the effect of symbionts from that of microbial diversity as a whole. We investigated the physiology of plants in response to drought when grown on a soil containing high or low level of microbial diversity. Plants grown under high microbial diversity displayed higher productivity and greater resilience after drought. Yield losses were mitigated by 15% on average in the presence of high soil microbial diversity at sowing. Our study provides proof of concept that the soil microbial community as a whole plays a key role for yield stability after drought even in plant species living in relationships with microbial symbionts. These results emphasize the need to restore soil biodiversity for sustainable crop management and climate change adaptation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号