首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This analysis corroborates and expands our previous results regarding the phylogenetic position of Cheilanthes species from South America. We sequenced three plastid genetic regions, one genic (rbcL) and two genic plus intergenic spacers (trnL + trnL-F and rps4 + rps4-trnS) from 25 South American cheilanthoid species. This allowed us to elucidate phylogenetic relationships that have been historically unresolved or were lowly supported. Here, we analyzed 45 Cheilanthes species (23 from South America) and circumscribed Cheilanthes s.s. in a strongly supported clade that contains three subclades: (i) exclusively from South America, (ii) from Australasia + South America, and (iii) from Africa. The position of three South American species, previously referred to the informal “Cheilanthes geraniifolia group”, is confirmed as a highly supported group outside Cheilanthes s.s. and within the Adiantopsis–Doryopteris clade. This group is described here as the new genus Mineirella. The new combinations for the genus and illustrations are included. Additionally, we discuss the morphological innovations that provide evidence to support the different clades.  相似文献   

2.
A phylogeny based on the analysis of six DNA sequence markers (ITS, ndhA intron, rpl32-trnL, rps3, rps16 intron, and rps16-trnK) is used to infer ancestral areas and divergence times, and reconstruct the biogeographical history and evolution of 150 of the 183 (82%) species of Muhlenbergia. Our results suggest that the genus originated 9.3 mya in the Sierra Madre (Occidental and Oriental) in Mexico, splitting into six lineages: M. ramulosa diverging 8.2 mya, M. subg. Muhlenbergia at 5.9 mya, M. subg. Pseudosporobolus at 5.9 mya, M. subg. Clomena at 5.4 mya, M. subg. Bealia at 4.3 mya, and M. subg. Trichochloa at 1 mya, each of these with a high probability of Sierra Madrean origin. Our results further suggest that founder-event speciation from Sierra Madre to South America occurred independently multiple times in all five subgenera during the Pleistocene and late Pliocene. One long-distance dispersal event most likely originating from Central or Eastern North America to East and Central Asia occurred 1.6–1 mya in M. subg. Muhlenbergia. In our cladogram, members of M. subg. Trichochloa show little genetic resolution, suggesting very low levels of divergence among the species, and this may be a consequence of rapid radiation.  相似文献   

3.
Despite the considerable research that has focused on the evolutionary relationships and biogeography of the genus Bufo, an evolutionary synthesis of the entire group has not yet emerged. In the present study, almost 4 kb of DNA sequence data from mitochondrial (12S, tRNAVal, and 16S) and nuclear (POMC; Rag-1) genes, and 83 characters from morphology were analysed to infer a phylogeny of South American toads. Phylogenies were reconstructed with parsimony and maximum likelihood and Bayesian model-based methods. The results of the analysis of morphological data support the hypothesis that within Bufo , some skull characters (e.g. frontoparietal width), correlated with the amount of cranial ossification, are prone to homoplasy. Unique and unreversed morphological synapomorphies are presented that can be used to diagnose recognized species groups of South American toads. The results of all phylogenetic analyses support the monophyly of most species groups of South American Bufo . In most DNA-only and combined analyses, the South American (minus the B. guttatus and part of the ' B. spinulosus ' groups), North American, Central American, and African lineages form generally well-supported clades: ((((((((South America) (North America + Central America)) Eurasia) Africa) Eurasia) South America) West Indies) South America). This result confirms and extends prior studies recovering South American Bufo as polyphyletic. The biogeographical results indicate that: (1) The origin of Bufo predates the fragmentation of Gondwana; (2) Central and North American species compose the sister group to a large, 'derived' clade of South American Bufo ; and (3) Eurasian species form the sister group to the New World clade.  © 2006 The Linnean Society of London, Zoological Journal of the Linnean Society , 2006, 146 , 407–452.  相似文献   

4.
5.
Phylogeographic and evolutionary studies are necessary to establish solid taxonomic treatments and to implement effective conservation programs. Unfortunately, a well‐argued and well‐founded taxonomic framework is still lacking for some Mediterranean taxa. This is the case of Arenaria section Pseudomoehringia, a group that currently comprises three species endemic to the Iberian Peninsula (A. funiculata, A. suffruticosa, and A. tejedensis) and A. glochidisperma, which is restricted to the Rif mountains, North Africa. However, the taxonomic boundaries and phylogenetic relationships among these species are still uncertain. To explore the evolutionary history and phylogeographic patterns within this section, analyses based on nuclear (amplified fragment length polymorphism and internal transcribed spacer) and plastid DNA markers (psbA‐3’ trnK‐matK and rps16) were performed. Our study has confirmed the monophyly of the section, in which two species are clearly identified (A. funiculata and A. glochidisperma) and an additional species complex (“A. suffruticosa + A. tejedensis complex”) is also supported as a monophyletic clade. The phylogeographic results point toward a dispersal event of a common ancestor of the group from the Iberian Peninsula, giving rise to A. glochidisperma in North Africa. Moreover, A. funiculata and A. glochidisperma are identified as closely related species edaphically differentiated across the Strait of Gibraltar. Our study indicates low levels of a recent gene flow among populations of the “A. suffruticosa + A. tejedensis complex,” which are genetically highly structured and suggest an isolation by distance pattern, probably due to a combination of ecological and geographic barriers. Furthermore, the taxonomic and conservation status of taxa included in Arenaria section Pseudomoehringia has been reviewed.  相似文献   

6.
Aim  The present-day geographical distribution of parasites with a direct biological life cycle is guided mostly by the past dispersal and vicariance events that have affected their hosts. The Amphibia– Polystoma association (which satisfies these criteria) also exhibits original traits, such as host specificity and world-wide distribution. This biological model was thus chosen to investigate the common historical biogeography of its widespread representatives.
Location  North and South America, Eurasia and Africa.
Methods  We investigated the phylogeny of 12 species of neobatrachian parasites sampled from North and South America, Eurasia and Africa. Hosts belonged mostly to hyloids and ranoids of families Bufonidae, Hylidae, Leptodactylidae, Ranidae and Hyperoliidae. Phylogenetic reconstructions were inferred from maximum likelihood and maximum parsimony analyses from complete ITS1 sequences.
Results  The group of American species appeared paraphyletic with one species at the base of a Eurafrican clade, within which two lineages were seen: one composed of only Eurasian species, and the other of European and African species, with the two European species basal to an African clade.
Main conclusions  The route of Polystoma evolution is deduced from the phylogenetic tree and discussed in the light of host evolution. We conclude that Polystoma originated in South America on hyloids, after the separation of South America from Africa. The genus must have colonized North America in Palaeocene times and Eurasia by the mid-Cainozoic, taking advantage of the dispersal of either ancestral bufonids or hylids. Africa, however, appears to have been colonized more recently, during the Messinian period.  相似文献   

7.
The dwarf dogwoods (subgenus Arctocrania) have been widely known to consist of three circumboreal species Cornus suecica, Cornus canadensis, and Cornus unalaschkensis. A fourth putative species was discovered from the northern Myanmar in 1937, but it had never been formally reported on. Here, we formally report the species on the basis of phylogenetic and morphological evidence and name it Cornus wardiana Rushforth & Wahlsteen (sp. nov.). We conducted phylogenetic and morphometric analyses to determine its evolutionary relationship and differentiation from the existing relatives. We dated the phylogeny using molecular data and conducted a biogeographic analysis to gain insights into the evolution and biogeography of the Arctic‐Sino‐Himalayan disjunction. The phylogenetic analysis used sequences of the nrITS and plastid matK and rbcL genes and included all four dwarf dogwoods and 20 other species representing the three other major lineages of Cornus and the outgroup. The morphometric analyses included 60 populations and 102 specimens of dwarf dogwood, representing the entire range of the subgenus. The results showed that C. wardiana diverged first within subgenus Arctocrania in the Miocene, from a wide‐spread ancestor. Results from principal component analysis and discriminant analysis also showed that the Myanmar samples are well separated from the others. Taken together, these results suggest that the dwarf dogwood lineage split from the big‐bracted dogwoods in Asia or Asia‐western North America during the late Paleocene and spread widely to form a Eurasia‐North America distribution; the Arctic‐Sino‐Himalayan disjunction was the result of southward migration in the Miocene followed by extinction in the intervening highland areas.  相似文献   

8.
To investigate the evolutionary relationships among species of Afrotrichloris, Apochiton, Coelachyrum, Dinebra, Eleusine, Leptochloa, and Schoenefeldia of subtribe Eleusininae, a phylogeny based on DNA sequences from nine gene regions (ITS, rps16-trnK, rps3, rps16, rpoC2, rpl32-trnL, ndhF, ndhA, ccsA) is presented. Previous molecular phylogenies indicated that Coelachyrum was polyphyletic and Schoenefeldia was paraphyletic, with Afrotrichloris embedded within it. Apochiton burttii was embedded in the Coelachyrum clade paired with C. longiglume, Coelachyrumpoiflorum was placed outside of Coelachyrum and sister to Eleusine, and Schoenefeldia is paraphyletic, with its two species forming a grade sister to Afrotrichoris. Our molecular phylogeny supports recognition of a new genus, Schoenefeldiella, and a new combination, Schoenfeldiella transiens. In addition, we provide generic emendations for Coelachyrum, which now includes five species including a new combination proposed here, Coelachyrum burttii, and Eleusine, which now includes 11 species.  相似文献   

9.
? Premise of the study: The American bulb-bearing Oxalis (Oxalidaceae) have diverse heterostylous breeding systems and are distributed in mountainous areas from Patagonia to the northeastern United States. To study the evolutionary processes leading to this diversity, we constructed the first molecular phylogeny for the American bulb-bearing Oxalis and used it to infer biogeographic history and breeding system evolution. ? Methods: We used DNA sequence data (nuclear ribosomal internal transcribed spacer, trnL-trnL-trnF, trnT-trnL, and psbJ-petA) to infer phylogenetic history via parsimony, likelihood, and Bayesian analyses. We used Bayes Multistate to infer ancestral geographic distributions at well-supported nodes of the phylogeny. The Shimodaira-Hasegawa (SH) test distinguished among hypotheses of single or multiple transitions from South America to North America, and tristyly to distyly. ? Key results: The American bulb-bearing Oxalis include sampled members of sections Ionoxalis and Pseudobulbosae and are derived from a larger clade that includes members of sections Palmatifoliae, Articulatae, and the African species. The American bulb-bearing Oxalis comprise two clades: one distributed in SE South America and the other in the Andes and North America. An SH test supports multiple dispersals to North America. Most sampled distylous species form a single clade, but at least two other independent distylous lineages are supported by the topologies and SH tests. ? Conclusions: Phylogenetic results suggest the American bulb-bearing Oxalis originated in southern South America, dispersed repeatedly to North America, and had multiple transitions from tristyly to distyly. This study adds to our understanding of biogeographic history and breeding system evolution and provides a foundation for more precise inferences about the study group.  相似文献   

10.
DNA barcoding is a molecular tool that uses a standardized DNA region to identify species. Our preliminary study reported here is the first attempt to specifically focus on universality and attributes of candidate barcodes across a wide systematic range of mosses. We tested eight previously proposed plant barcoding regions (atpF-atpH, ITS2, matK, psbK-psbI, rbcL, rpoB, rpoC1, trnH-psbA) and two popular phylogenetic markers (rps4 and trnL-trnF of cpDNA) in 49 moss species and 9 liverwort species, representing half of the orders in moss lineages. The ITS2, rbcL, rpoC1, rps4, trnH-psbA and trnL-trnF regions showed good universality, and therefore the efficacy of these loci as DNA barcodes was further evaluated in 36 mosses and 2 liverworts, each of which included two to three individuals per taxa. The five loci, viz. rbcL, rpoC1, rps4, trnH-psbA and trnL-trnF, were easy to amplify and sequence and showed significant interspecific genetic variability, making them potentially useful DNA barcodes for mosses. The best performing single loci were the rbcL and rpoC1 coding regions. Several loci showed equivalent performance and combinations of them did not greatly increase their discrimination capacity. In addition, phylogenies generated from each of the separate regions and multi-locus combinations by using best-fit and Kimura 2-parameter models were compared, but no significant difference was found.  相似文献   

11.
Fagus L. is a key component in temperate deciduous broadleaf forests of the Northern Hemisphere. However, its biogeographic history has not been examined under the framework of a fully resolved and reasonably time-calibrated phylogeny. In this study, we sequenced 28 nuclear single/low-copy loci (18 555 bp in total) of 11 Fagus species/segregates and seven outgroups. Phylogenetic trees were reconstructed using both concatenation-based (maximum parsimony, maximum likelihood, and Bayesian inference) and coalescent-based methods (StarBEAST2, ASTRAL). The monophyly of two subgenera (Fagus and Engleriana) and most sections was well supported, except for sect. Lucida, which was paraphyletic with respect to sect. Longipetiolata. We also found a major phylogenetic conflict among North American, East Asian, and West Eurasian lineages of subgen. Fagus. Three segregates that have isolated distribution (F. mexicana, F. multinervis, and F. orientalis) were independent evolutionary units. Biogeographic analysis with fossils suggested that Fagus could have originated in the North Pacific region in late early Eocene. Major diversifications coincided with a climate aberration at the Eocene/Oligocene boundary and the global cooling since mid-Miocene. The late Miocene accelerated global cooling and the Pleistocene glaciations would have driven beeches into East Asia, North America, and West Eurasia. Meanwhile, range reduction and extinction in high latitudes, central Asia, and western North America converged to form the beech modern distribution pattern. This study provides a first attempt to disentangle the biogeographic history of beeches in the context of a nearly resolved and time-calibrated phylogeny, which could shed new insights into the formation of the temperate biome in the Northern Hemisphere.  相似文献   

12.
13.
14.
The historical biogeography of insects in South America is largely unknown, as dated phylogenies have not been available for most groups. We have studied the phylogenetic relationships and historical biogeography of a subtribe of butterflies, Phyciodina in the family Nymphalidae, based on one mitochondrial gene (COI) and two nuclear gene regions (EF-1alpha and wingless). The subtribe comprises 89 species mainly found in tropical South America, with a few species in North America and the Greater Antilles. We find that the enigmatic genus Antillea is sister to the rest of Phyciodina, and suggest that it should be included in the subtribe. Several genera are found to be polyphyletic or nested within another genus, and are proposed to be synonymised. These are Dagon, Castilia, Telenassa and Janatella, which we propose should be synonymised with Eresia. Brazilian "Ortilia" form an independent lineage and require a new genus name. The diversification of Phyciodina has probably taken place over the past about 34 MYA. The ancestral phyciodine colonised South America from North America through a possible landspan that connected the Greater Antilles to South America about 34MYA. A vicariance event left the ancestral Antillea on the Greater Antilles, while the ancestral 0e on South America colonised the Guyanan Shield and soon after the Brazilian Shield. We hypothesise that the Brazilian Shield was an important area for the diversification of Phyciodina. From there, the ancestor of Anthanassa, Eresia and Tegosa colonised NW South America, where especially Eresia diversified in concert with the rising of the Andes beginning about 20 MYA. Central America was colonised from NW South America about 15 MYA by the ancestors of Anthanassa and Phyciodes. Our study is the first to use a dated phylogeny to study the historical biogeography of a group of South American species of butterflies.  相似文献   

15.
Chloroplast DNA (cpDNA) variation was surveyed with 20 restriction endonucleases for the eastern Asian and eastern North American disjunct genus Symplocarpus (Araceae). The cpDNA phylogeny reveals a sister group relationship between S. foetidus from eastern North America and S. renifolius from eastern Asia. The cpDNA divergence between the two intercontinental sister species is 0.61%, which suggests an estimated divergence time of 6.1 million years ago during the late Miocene. The Bering land bridge hypothesis is compatible with the estimated time of divergence for the migration of Symplocarpus between eastern Asia and North America. Furthermore, a single origin of the exothermic spadices in Symplocarpus is suggested by the phylogeny. The cpDNA data also provide independent support for the recognition of three species within the genus.  相似文献   

16.
17.
The region of Tropical Southeast Asia and the Malay Archipelago is a very appealing area for research due to its outstanding biodiversity, being one of the most species-rich areas in the world with high levels of endemism, and due to its complex geological history. The high number of species in tribe Dissochaeteae (Melastomataceae) and their tendency to narrow endemism makethe tribe an ideal group for examining biogeographic patterns. We sampled 58 accessions spread over 42 accepted and two undescribed species of the Dissochaeteae. Two nuclear (ETS, ITS) and four chloroplast regions (ndhF, psbK-psbL, rbcL, rpl16) were used for divergence time estimation and ancestral area reconstruction. Results from the molecular dating analysis suggest that the diversity of Dissochaeteae in the Southeast Asian region resulted from a South American ancestor in the late Eocene. The ancestor of the Dissochaeteae might have migrated from South America to Southeast Asia via North America and then entered Eurasia over the North Atlantic land bridge during the Eocene. The origin and early diversification of the Dissochaeteae in Southeast Asia dates back to the middle Oligocene, and most of the genera originated during the Miocene. Indochina and Borneo are most likely the area of origin for the most recent common ancestor of the Dissochaeteae and for many of the early diverging clades of some genera within Southeast Asia.  相似文献   

18.
Bees are among the most important pollinators of angiosperm plants. Many bee species show narrow host‐plant preferences, reflected both in behavioral and morphological adaptations to particular attributes of host‐plant pollen or floral morphology. Whether bee host‐plant associations reflect co‐cladogenesis of bees and their host plants or host‐switches to unrelated host plants is not clear. Rophitinae is a basal subfamily of Halictidae in which most species show narrow host‐plant preferences (oligolecty). We reconstructed the phylogenetic relationships among the rophitine genera using a combination of adult morphology (24 characters) and DNA sequence data (EF‐1α, LW rhodopsin, wingless; 2700 bp total). The data set was analyzed by parsimony, maximum likelihood and Bayesian methods. All methods yielded highly congruent results. Using the phylogeny, we investigated the pattern of host‐plant association as well as the historical biogeography of Rophitinae. Our biogeographical analysis suggests a number of dispersal/vicariance events: (1) a basal split between North America and South America (most likely a dispersal from South America to North America), and (2) at least two subsequent interchanges between North America and Eurasia (presumably via the northern hemisphere land bridges). Our analysis of host‐plant associations indicates that Rophitinae specialized on a closely related group of angiosperm orders in the Euasterid I clade (mainly Gentianales, Lamiales and Solanales). However, there is little evidence of cocladogenesis between bees and plants and strong evidence of host switches to unrelated host plants. Based on our phylogenetic results we describe two new tribes of Rophitinae: Conanthalictini new tribe (including the genus Conanthalictus) and Xeralictini new tribe (including Xeralictus and Protodufourea). © The Willi Hennig Society 2007.  相似文献   

19.
Leibnitzia comprises six species of perennial herbs that are adapted to high elevation conditions and is one of only two Asteraceae genera known to have an exclusively disjunct distribution spanning central to eastern Asia and North America. Molecular phylogenetic analysis of Leibnitzia and other Gerbera-complex members indicates that Leibnitzia is monophyletic, which is in contrast with our expectation that the American Leibnitzia species L. Lyrata and L. Occimadremis would be more closely related to another American member of the Gerbera-complex, namely Chaptalia. Ancestral area reconstructions show that the historical biogeography of the Gerbera-complex mirrors that of the entire Asteraceae, with early diverging lineages located in South America that were followed by transfers to Africa and Eurasia and, most recently, to North America. Intercontinental transfer of Leibnitzia appears to have been directed from Asia to North America. Independent calibrations of nuclear (ribosomal DNA internal transcribed spacer region) and chloroplast (trnL-rpl32 intron) DNA sequence data using relaxed clock methods and either mean rate or fossil-based priors unanimously support Miocene and younger divergence times for Gerbera-complex taxa. The ages are not consistent with most Gondwanan vicariance episodes and, thus, the global distribution of Gerbera-complex members must be explained in large part by long-distance dispersal. American species of Leibnitzia are estimated to have diverged from then- Asian ancestor during the Quaternary (ca. 2 mya) and either migrated overland to North America via Beringia and retreated southwards along high elevation corridors to their- present location in southwestern North America or were dispersed long distance.  相似文献   

20.
Phylogenetic relationships within the flowering plant genus Styrax were investigated with DNA sequence data from the internal transcribed spacer (ITS) region of nuclear ribosomal DNA (nrDNA) and with chloroplast DNA restriction site data from the genes trnK, rpoC1, and rpoC2. The data sets from each genome were analyzed separately and in combination with parsimony methods. The results strongly support the monophyly of each of the four series of the genus but provide little phylogenetic resolution among them. Reticulate evolution may at least partly explain discordance between the molecular phylogenetic estimates and a prior morphological estimate within series Cyrta. The historical biogeography of the genus was inferred with unweighted parsimony character optimization of trees recovered from a combined ITS and morphological data set, after a series of combinability tests for data set congruence was conducted. The results are consistent with the fossil record in supporting a Eurasian origin of Styrax. The nested phylogenetic position of the South American members of the genus within those from southern North America and Eurasia suggests that the boreotropics hypothesis best explains the amphi-Pacific tropical disjunct distribution occurring within section Valvatae. The pattern of relationship recovered among the species of section Styrax ((western North America + western Eurasia) (eastern North America + eastern Eurasia)) is rare among north-temperate Tertiary forest relicts. The monophyly of the group of species from western North America and western Eurasia provides qualified support for the Madrean-Tethyan hypothesis, which posits a Tertiary floristic connection among the semiarid regions in which these taxa occur. A single vicariance event between eastern Asia and eastern North America accounts for the pattern of relationship among intercontinental disjuncts in series Cyrta.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号