首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Gravitropism aligns plant growth with gravity. It involves gravity perception and the asymmetric distribution of the phytohormone auxin. Here we provide insights into the mechanism for hypocotyl gravitropic growth. We show that the Arabidopsis thaliana PIN3 auxin transporter is required for the asymmetric auxin distribution for the gravitropic response. Gravistimulation polarizes PIN3 to the bottom side of hypocotyl endodermal cells, which correlates with an increased auxin response at the lower hypocotyl side. Both PIN3 polarization and hypocotyl bending require the activity of the trafficking regulator GNOM and the protein kinase PINOID. Our data suggest that gravity-induced PIN3 polarization diverts the auxin flow to mediate the asymmetric distribution of auxin for gravitropic shoot bending.  相似文献   

2.
<正>The classical "Cholodny-Went theory" predicted that directional stimuli trigger the redistribution of auxin, which governs the differential growth of plant organs through potent effects on cell expansion, thereby establishing an"auxin-then-growth" paradigm; this theory has been validated for both gravitropism and phototropism in plants(reviewed in Muthert et al., 2020).  相似文献   

3.
The development of a hook-like structure at the apical part of the soil-emerging organs has fascinated botanists for centuries, but how it is initiated remains unclear. Here, we demonstrate with highthroughput infrared imaging and 2-D clinostat treatment that, when gravity-induced root bending is absent, apical hook formation still takes place.In such scenarios, hook formation begins with a de novo growth asymmetry at the apical part of a straightly elongating hypocotyl. Remarkably, suchde novo ...  相似文献   

4.
5.
6.
Plants depend on gravity to provide the constant landmark for downward root growth and upward shoot growth. The phytohormone auxin and its cell‐to‐cell transport machinery are central determinants ensuring gravitropic growth. Statolith sedimentation toward gravity is sensed in specialized cells. This positional cue is translated into the polar distribution of PIN auxin efflux carriers at the plasma membrane, leading to asymmetric auxin distribution and consequently, differential growth and organ bending. While we have started to understand the general principles of how primary organs execute gravitropism, we currently lack basic understanding of how lateral plant organs can defy gravitropic responses. Here we briefly review the establishment of the oblique gravitropic set point angle in lateral roots and particularly discuss the emerging role of asymmetric cytokinin signaling as a central anti‐gravitropic signal. Differential cytokinin signaling is co‐opted in gravitropic lateral and hydrotropic primary roots to counterbalance gravitropic root growth.  相似文献   

7.
Gravity-induced root curvature involves the asymmetric distribution of the phytohormone auxin. This response depends on the concerted activities of the auxin transporters such as PIN-FORMED(PIN)proteins for auxin efflux and AUXIN RESISTANT 1(AUX1) for auxin influx. However, how the auxin gradient is established remains elusive. Here we identified a new mutant with a short root, strong auxin distribution in the lateral root cap and an impaired gravitropic response. The causal gene encoded an Arab...  相似文献   

8.
Phototropism is the process by which plants grow towards light in order to maximize the capture of light for photosynthesis, which is particularly important for germinating seedlings. In Arabidopsis, hypocotyl phototropism is predominantly triggered by blue light (BL), which has a profound effect on the establishment of asymmetric auxin distribution, essential for hypocotyl phototropism. Two auxin efflux transporters ATP‐binding cassette B19 (ABCB19) and PIN‐formed 3 (PIN3) are known to mediate the effect of BL on auxin distribution in the hypocotyl, but the details for how BL triggers PIN3 lateralization remain poorly understood. Here, we report a critical role for clathrin in BL‐triggered, PIN3‐mediated asymmetric auxin distribution in hypocotyl phototropism. We show that unilateral BL induces relocalization of clathrin in the hypocotyl. Loss of clathrin light chain 2 (CLC2) and CLC3 affects endocytosis and lateral distribution of PIN3 thereby impairing BL‐triggered establishment of asymmetric auxin distribution and consequently, phototropic bending. Conversely, auxin efflux inhibitors N‐1‐naphthylphthalamic acid and 2,3,5‐triiodobenzoic acid affect BL‐induced relocalization of clathrin, endocytosis and lateralization of PIN3 as well as asymmetric distribution of auxin. These results together demonstrate an important interplay between auxin and clathrin function that dynamically regulates BL‐triggered hypocotyl phototropism in Arabidopsis.  相似文献   

9.
Nitric oxide mediates gravitropic bending in soybean roots   总被引:18,自引:0,他引:18       下载免费PDF全文
Hu X  Neill SJ  Tang Z  Cai W 《Plant physiology》2005,137(2):663-670
Plant roots are gravitropic, detecting and responding to changes in orientation via differential growth that results in bending and reestablishment of downward growth. Recent data support the basics of the Cholodny-Went hypothesis, indicating that differential growth is due to redistribution of auxin to the lower sides of gravistimulated roots, but little is known regarding the molecular details of such effects. Here, we investigate auxin and gravity signal transduction by demonstrating that the endogenous signaling molecules nitric oxide (NO) and cGMP mediate responses to gravistimulation in primary roots of soybean (Glycine max). Horizontal orientation of soybean roots caused the accumulation of both NO and cGMP in the primary root tip. Fluorescence confocal microcopy revealed that the accumulation of NO was asymmetric, with NO concentrating in the lower side of the root. Removal of NO with an NO scavenger or inhibition of NO synthesis via NO synthase inhibitors or an inhibitor of nitrate reductase reduced both NO accumulation and gravitropic bending, indicating that NO synthesis was required for the gravitropic responses and that both NO synthase and nitrate reductase may contribute to the synthesis of the NO required. Auxin induced NO accumulation in root protoplasts and asymmetric NO accumulation in root tips. Gravistimulation, NO, and auxin also induced the accumulation of cGMP, a response inhibited by removal of NO or by inhibitors of guanylyl cyclase, compounds that also reduced gravitropic bending. Asymmetric NO accumulation and gravitropic bending were both inhibited by an auxin transport inhibitor, and the inhibition of bending was overcome by treatment with NO or 8-bromo-cGMP, a cell-permeable analog of cGMP. These data indicate that auxin-induced NO and cGMP mediate gravitropic curvature in soybean roots.  相似文献   

10.
Re-orientation of Arabidopsis seedlings induces a rapid, asymmetric release of the growth regulator auxin from gravity-sensing columella cells at the root apex. The resulting lateral auxin gradient is hypothesized to drive differential cell expansion in elongation-zone tissues. We mapped those root tissues that function to transport or respond to auxin during a gravitropic response. Targeted expression of the auxin influx facilitator AUX1 demonstrated that root gravitropism requires auxin to be transported via the lateral root cap to all elongating epidermal cells. A three-dimensional model of the root elongation zone predicted that AUX1 causes the majority of auxin to accumulate in the epidermis. Selectively disrupting the auxin responsiveness of expanding epidermal cells by expressing a mutant form of the AUX/IAA17 protein, axr3-1, abolished root gravitropism. We conclude that gravitropic curvature in Arabidopsis roots is primarily driven by the differential expansion of epidermal cells in response to an influx-carrier-dependent auxin gradient.  相似文献   

11.
Rice tiller angle determines plant growth density and further contributes grain production. Although a few genes have been characterized to regulate tiller angle in rice, the molecular mechanism underlying the control of tiller angle via microRNA is poorly understood. Here, we report that rice tiller angle is controlled by OsmiR167a‐targeted auxin response factors OsARF12, OsARF17 and OsARF25. In the overexpression of OsMIR167a plants, the expression of OsARF12, OsARF17 and OsARF25 was severely repressed and displayed larger tiller angle as well as the osarf12/osarf17 and osarf12/ osarf25 plants. In addition, those plants showed compromised abnormal auxin distribution and less sensitive to gravity. We also demonstrate that OsARF12, OsARF17 and OsARF25 function redundantly and might be involved in HSFA2D and LAZY1‐dependent asymmetric auxin distribution pathway to control rice tiller angle. Our results reveal that OsmiR167a represses its targets, OsARF12, OsARF17 and OsARF25, to control rice tiller angle by fine‐tuning auxin asymmetric distribution in shoots.  相似文献   

12.
13.
Plant shoot phototropism is triggered by the formation of a light-driven auxin gradient leading to bending growth. The blue light receptor phototropin 1(phot1) senses light direction, but how this leads to auxin gradient formation and growth regulation remains poorly understood. Previous studies have suggested phot1’s role for regulated apoplastic acidification, but its relation to phototropin and hypocotyl phototropism is unclear. Herein, we show that blue light can cause phot1 to interact with...  相似文献   

14.
15.
16.
17.
Although sessile, plants are able to grow toward or away from an environmental stimulus. Important examples are stem or leaf orientation of higher plants in response to the direction of the incident light. The responsible photoreceptors belong to the phototropin photoreceptor family. Although the mode of phototropin action is quite well understood, much less is known of how the light signal is transformed into a bending response. Several lines of evidence indicate that a lateral auxin gradient is responsible for asymmetric cell elongation along the light gradient within the stem. However, some of the molecular key players leading to this asymmetric auxin distribution are, as yet, unidentified. Previously, it was shown that phototropin gets autophosphorylated upon illumination and binds to a scaffold protein termed NPH3 (for nonphototropic hypocotyl 3). Using a yeast three-hybrid approach with phototropin and NPH3 as a bait complex, we isolated a protein, termed EHB1 (for enhanced bending 1), with a so far unknown function, which binds to this binary complex. This novel interacting factor negatively affects hypocotyl bending under blue light conditions in Arabidopsis (Arabidopsis thaliana) and thus seems to be an important component regulating phototropism. Interestingly, it could be shown that the gravitropic response was also affected. Thus, it cannot be ruled out that this protein might also have a more general role in auxin-mediated bending toward an environmental stimulus.  相似文献   

18.
19.
20.
Photoreceptors, phytochromes and cryptochromes regulate hypocotyl growth under specific conditions, by suppressing negative gravitropism, modulating phototropism and inhibiting elongation. Although these effects seem to be partially caused via the regulation of the phytohormone auxin, the molecular mechanisms underlying this process are still poorly understood. In our present study, we demonstrate that the flabby mutation enhances both phytochrome- and cryptochrome-inducible hypocotyl bending in Arabidopsis. The FLABBY gene encodes the ABC-type auxin transporter, PGP19, and its expression is suppressed by the activation of phytochromes and cryptochromes. Our current results therefore indicate that the phytochromes and cryptochromes have at least two effects upon the tropic responses of the hypocotyls in Arabidopsis: the enhancement of hypocotyl bending through the suppression of PGP19, and a PGP19-independent mechanism that induces hypocotyl bending. By the using an auxin polar transport assay and DR5:GUS expression analysis, we further find that the phytochromes inhibit basipetal auxin transport, and induce the asymmetric distribution of auxin in the hypocotyls. These data suggest that the control of auxin transport by phytochromes and cryptochromes is a critical regulatory component of hypocotyl growth in response to light.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号