共查询到20条相似文献,搜索用时 15 毫秒
1.
Lin-Feng Qiu Jiu-Dong Zhang Ying Li Xiao-Ying Liu Dan-Qing Zhang Long Huang Ya-Peng Yang Shi-Yu Wang Yue-Yi Li Zi-Wei Ma Jie Sui Lin Wang Xiao-Fen Che Xian-Hua Tian Yi Ren Jian-Qiang Zhang 《Journal of Plant Ecology》2024,17(4):0
开展植物的传粉生物学研究不但对于理解其繁殖生物学至关重要,还有利于阐明该物种的适应和演化历史。本文对毛茛科类叶升麻属(Actaea L.)两个近缘物种紫花升麻(Actaea purpurea)与小升麻(Actaeajaponica)进行了繁育系统和传粉生物学研究。紫花升麻的花部特征在该属中独一无二:其萼片紫色、纸质,在花开早期不脱落;雄蕊较少,6–8枚,花丝紫色,花药黄色。通过3个生长季的野外观察及传粉者排除实验,我们发现紫花升麻主要由黑盾胡蜂(Vespa bicolor)传粉,相较于中华蜜蜂等其他传粉者,黑盾胡蜂对于紫花升麻的传粉更为高效,而小升麻主要由大型蝇类传粉。紫花升麻相比小升麻分泌更多花蜜,这可能是吸引黑盾胡蜂的因素之一。通过对照实验发现,去除紫花升麻的蜜腺叶(花瓣)后,黑盾胡蜂的访花频次显著下降。繁育系统研究发现,虽然紫花升麻与小升麻均为自交亲和,但在野外自发自交率并不高,仍以异交为主,两者均依赖传粉者完成授粉。总体而言,本研究发现类叶升麻属内一个伴随花部形态分化的传粉者转变案例,对这一体系的深入研究有利于进一步了解传粉昆虫参与植物物种形成的过程,以及它们是否在植物近缘种的生殖隔离中扮演重要角色。 相似文献
2.
A. S. T. Papadopulos Z. Price C. Devaux H. Hipperson C. M. Smadja I. Hutton W. J. Baker R. K. Butlin V. Savolainen 《Journal of evolutionary biology》2013,26(4):733-745
On Lord Howe Island, speciation is thought to have taken place in situ in a diverse array of distantly related plant taxa (Metrosideros, Howea and Coprosma; Proc. Natl Acad. Sci. USA 108 , 2011, 13188). We now investigate whether the speciation processes were driven by divergent natural selection in each genus by examining the extent of ecological and genetic divergence. We present new and extensive, ecological and genetic data for all three genera. Consistent with ecologically driven speciation, outlier loci were detected using genome scan methods. This mechanism is supported by individual‐based analyses of genotype–environment correlations within species, demonstrating that local adaptation is currently widespread on the island. Genetic analyses show that prezygotic isolating barriers within species are currently insufficiently strong to allow further population differentiation. Interspecific hybridization was found in both Howea and Coprosma, and species distribution modelling indicates that competitive exclusion may result in selection against admixed individuals. Colonization of new niches, partly fuelled by the rapid generation of new adaptive genotypes via hybridization, appears to have resulted in the adaptive radiation in Coprosma – supporting the ‘Syngameon hypothesis’. 相似文献
3.
Recently diverged populations often exhibit incomplete reproductive isolation, with a low level of gene flow continuing between populations. Previous studies have shown that, even under a low level of gene flow, genetic divergence between populations can proceed at the loci governing local adaptation and reproductive isolation but not at other neutral loci. A leaf‐mining moth, Acrocercops transecta, consists of Juglans‐ and Lyonia‐associated host races. The two host races differ in host preferences of ovipositing females and in larval adaptation to host plants but mate readily in the laboratory, producing fertile hybrids. The Juglans and Lyonia races are often sympatric in the wild, implying that gene introgression could occur in nature between the two host races. We tested this hypothesis by combining phylogenetic analyses with coalescent simulations, focusing on mitochondrial genes (COI and ND5) and the nuclear Tpi, Per and Ldh genes located on the Z‐chromosome. The mitochondrial genes clearly distinguished the Lyonia race from the Juglnas race, whereas the Tpi, Per and Ldh genealogies did not reflect the two host races. Coalescent simulations indicated gene flow at the three Z‐linked genes in both directions, whereas there was no introgression in the mitochondrial genes. The lack of introgression in mitochondrial genes suggests that female host preference is the primary force leading to the bifurcation of maternally inherited loci. Thus, the results show that a low level of gene flow coupled with the inflexible female host preference differentiates histories of divergence between maternally and biparentally inherited genes in this host race system. 相似文献
4.
Population divergence and speciation are often explained by geographical isolation, but may also be possible under high gene flow due to strong ecology‐related differences in selection pressures. This study combines coalescent analyses of genetic data (11 microsatellite loci and 1 Kbp of mtDNA) and ecological modelling to examine the relative contributions of isolation and ecology to incipient speciation in the scincid lizard Chalcides sexlineatus within the volcanic island of Gran Canaria. Bayesian multispecies coalescent dating of within‐island genetic divergence of northern and southern populations showed correspondence with the timing of volcanic activity in the north of the island 1.5–3.0 Ma ago. Coalescent estimates of demographic changes reveal historical size increases in northern populations, consistent with expansions from a volcanic refuge. Nevertheless, ecological divergence is also supported. First, the two morphs showed non‐equivalence of ecological niches and species distribution modelling associated the northern morph with mesic habitat types and the southern morph with xeric habitat types. It seems likely that the colour morphs are associated with different antipredator strategies in the different habitats. Second, coalescent estimation of gene copy migration (based on microsatellites and mtDNA) suggest high rates from northern to southern morphs demonstrating the strength of ecology‐mediated selection pressures that maintain the divergent southern morph. Together, these findings underline the complexity of the speciation process by providing evidence for the combined effects of ecological divergence and ancient divergence in allopatry. 相似文献
5.
Three-spined sticklebacks (Gasterosteus aculeatus) are a powerful evolutionary model system due to the rapid and repeated phenotypic divergence of freshwater forms from a marine ancestor throughout the Northern Hemisphere. Many of these recently derived populations are found in overlapping habitats, yet are reproductively isolated from each other. This scenario provides excellent opportunities to investigate the mechanisms driving speciation in natural populations. Genetically distinguishing between such recently derived species, however, can create difficulties in exploring the ecological and genetic factors defining species boundaries, an essential component to our understanding of speciation. We overcame these limitations and increased the power of analyses by selecting highly discriminatory markers from the battery of genetic markers now available. Using species diagnostic molecular profiles, we quantified levels of hybridization and introgression within three sympatric species pairs of three-spined stickleback. Sticklebacks within Priest and Paxton lakes exhibit a low level of natural hybridization and provide support for the role of reinforcement in maintaining distinct species in sympatry. In contrast, our study provides further evidence for a continued breakdown of the Enos Lake species pair into a hybrid swarm, with biased introgression of the 'limnetic' species into that of the 'benthic'; a situation that highlights the delicate balance between persistence and breakdown of reproductive barriers between young species. A similar strategy utilizing the stickleback microsatellite resource can also be applied to answer an array of biological questions in other species' pair systems in this geographically widespread and phenotypically diverse model organism. 相似文献
6.
I. R. Bradbury † M. W. Coulson S. E. Campana ‡ P. Bentzen 《Journal of fish biology》2006,69(SC):95-114
Morphological analyses were combined with genetic analyses at nine microsatellite loci to examine the determinants of gene flow at 21 spawning locations of rainbow smelt Osmerus mordax along the east coast of Canada. Associations between morphology, geography and gene flow were examined using a computational geometric approach and partial Mantel tests. Significant barriers to gene flow and discontinuities in morphology were observed between Newfoundland and mainland Canada, as well as within Newfoundland samples. On regional scales, contrasting patterns were present with restricted gene flow between Newfoundland populations ( F ST = c . 0·11) and high gene flow between mainland populations ( F ST = c . 0·017). Within Newfoundland populations, geographic distance was significantly associated with gene flow ( r = 0·85, P < 0·001) contrasting mainland samples where gene flow was most associated with phenotypic divergence ( r = 0·33, P < 0·001). At large spatial scales, weak ( r = 0·19, P = 0·02) associations between gene flow and geographic distance were observed, and moderate associations were also observed between gene flow and morphology ( r = 0·28, P < 0·001). The presence of significant genetic isolation by distance in Newfoundland samples and the clear discontinuity associated with the Cabot Strait suggest geography may be the primary determinant of gene flow. Interestingly, the association between genetic and morphological divergence within mainland samples and overall, supports the hypothesis that gene flow may be moderated by morphological divergence at larger spatial scales even in high gene flow environments. 相似文献
7.
Non‐random mating provides multiple evolutionary benefits and can result in speciation. Biological organisms are characterised by a myriad of different traits, many of which can serve as mating cues. We consider multiple mechanisms of non‐random mating simultaneously within a unified modelling framework in an attempt to understand better which are more likely to evolve in natural populations going through the process of local adaptation and ecological speciation. We show that certain traits that are under direct natural selection are more likely to be co‐opted as mating cues, leading to the appearance of magic traits (i.e. phenotypic traits involved in both local adaptation and mating decisions). Multiple mechanisms of non‐random mating can interact so that trait co‐evolution enables the evolution of non‐random mating mechanisms that would not evolve alone. The presence of magic traits may suggest that ecological selection was acting during the origin of new species. 相似文献
8.
Character displacement – trait evolution stemming from selection to lessen resource competition or reproductive interactions between species – has long been regarded as important in finalizing speciation. By contrast, its role in initiating speciation has received less attention. Yet because selection for character displacement should act only where species co‐occur, individuals in sympatry will experience a different pattern of selection than conspecifics in allopatry. Such divergent selection might favour reduced gene flow between conspecific populations that have undergone character displacement and those that have not, thereby potentially triggering speciation. Here, we explore these ideas empirically by focusing on spadefoot toads, Spea multiplicata, which have undergone character displacement, and for which character displacement appears to cause post‐mating isolation between populations that are in sympatry with a heterospecific and those that are in allopatry. Using mitochondrial sequence data and nuclear microsatellite genotypes, we specifically asked whether gene flow is reduced between populations in different selective environments relative to that between populations in the same selective environment. We found a slight, but statistically significant, reduction in gene flow between selective environments, suggesting that reproductive isolation, and potentially ecological speciation, might indeed evolve as an indirect consequence of character displacement. Generally, character displacement may play a largely underappreciated role in instigating speciation. 相似文献
9.
Understanding how speciation can take place in the presence of homogenizing gene flow remains a major challenge in evolutionary biology. In the early stages of ecological speciation, reproductive isolation between populations occupying different habitats is expected to be concentrated around genes for local adaptation. These genomic regions will show high divergence while gene exchange in other regions of the genome should continue relatively unimpaired, resulting in low levels of differentiation. The problem is to explain how speciation progresses from this point towards complete reproductive isolation, allowing genome‐wide divergence. A new study by Via and West (2008) on speciation between host races of the pea aphid, Acyrthosiphon pisum, introduces the mechanism of ‘divergence hitchhiking’ which can generate large ‘islands of differentiation’ and facilitate the build‐up of linkage disequilibrium, favouring increased reproductive isolation. This idea potentially removes a major stumbling block to speciation under continuous gene flow. 相似文献
10.
H. Breitkopf P. M. Schlüter S. Xu F. P. Schiestl S. Cozzolino G. Scopece 《Journal of evolutionary biology》2013,26(10):2197-2208
Local adaptation to different pollinators is considered one of the possible initial stages of ecological speciation as reproductive isolation is a by‐product of the divergence in pollination systems. However, pollinator‐mediated divergent selection will not necessarily result in complete reproductive isolation, because incipient speciation is often overcome by gene flow. We investigated the potential of pollinator shift in the sexually deceptive orchids Ophrys sphegodes and Ophrys exaltata and compared the levels of floral isolation vs. genetic distance among populations with contrasting predominant pollinators. We analysed floral hydrocarbons as a proxy for floral divergence between populations. Floral adoption of pollinators and their fidelity was tested using pollinator choice experiments. Interpopulation gene flow and population differentiation levels were estimated using AFLP markers. The Tyrrhenian O. sphegodes population preferentially attracted the pollinator bee Andrena bimaculata, whereas the Adriatic O. sphegodes population exclusively attracted A. nigroaenea. Significant differences in scent component proportions were identified in O. sphegodes populations that attracted different preferred pollinators. High interpopulation gene flow was detected, but populations were genetically structured at species level. The high interpopulation gene flow levels independent of preferred pollinators suggest that local adaptation to different pollinators has not (yet) generated detectable genome‐wide separation. Alternatively, despite extensive gene flow, few genes underlying floral isolation remain differentiated as a consequence of divergent selection. Different pollination ecotypes in O. sphegodes might represent a local selective response imposed by temporal variation in a geographical mosaic of pollinators as a consequence of the frequent disturbance regimes typical of Ophrys habitats. 相似文献
11.
Strong barriers to genetic exchange can exist at divergently selected loci, whereas alleles at neutral loci flow more readily between populations, thus impeding divergence and speciation in the face of gene flow. However, ‘divergence hitchhiking’ theory posits that divergent selection can generate large regions of differentiation around selected loci. ‘Genome hitchhiking’ theory suggests that selection can also cause reductions in average genome‐wide rates of gene flow, resulting in widespread genomic divergence (rather than divergence only around specific selected loci). Spatial heterogeneity is ubiquitous in nature, yet previous models of genetic barriers to gene flow have explored limited combinations of spatial and selective scenarios. Using simulations of secondary contact of populations, we explore barriers to gene flow in various selective and spatial contexts in continuous, two‐dimensional, spatially explicit environments. In general, the effects of hitchhiking are strongest in environments with regular spatial patterning of starkly divergent habitat types. When divergent selection is very strong, the absence of intermediate habitat types increases the effects of hitchhiking. However, when selection is moderate or weak, regular (vs. random) spatial arrangement of habitat types becomes more important than the presence of intermediate habitats per se. We also document counterintuitive processes arising from the stochastic interplay between selection, gene flow and drift. Our results indicate that generalization of results from two‐deme models requires caution and increase understanding of the genomic and geographic basis of population divergence. 相似文献
12.
Magnus W. Jacobsen Jose Martin Pujolar Louis Bernatchez Kasper Munch Jianbo Jian Yongchao Niu Michael M. Hansen 《Molecular ecology》2014,23(19):4785-4798
The importance of speciation‐with‐geneflow scenarios is increasingly appreciated. However, the specific processes and the resulting genomic footprints of selection are subject to much discussion. We studied the genomics of speciation between the two panmictic, sympatrically spawning sister species; European (Anguilla anguilla) and American eel (A. rostrata). Divergence is assumed to have initiated more than 3 Ma, and although low gene flow still occurs, strong postzygotic barriers are present. Restriction‐site‐associated DNA (RAD) sequencing identified 328 300 SNPs for subsequent analysis. However, despite the presence of 3757 strongly differentiated SNPs (FST > 0.8), sliding window analyses of FST showed no larger genomic regions (i.e. hundreds of thousands to millions of bases) of elevated differentiation. Overall FST was 0.041, and linkage disequilibrium was virtually absent for SNPs separated by more than 1000 bp. We suggest this to reflect a case of genomic hitchhiking, where multiple regions are under directional selection between the species. However, low but biologically significant gene flow and high effective population sizes leading to very low genetic drift preclude accumulation of strong background differentiation. Genes containing candidate SNPs for positive selection showed significant enrichment for gene ontology (GO) terms relating to developmental processes and phosphorylation, which seems consistent with assumptions that differences in larval phase duration and migratory distances underlie speciation. Most SNPs under putative selection were found outside coding regions, lending support to emerging views that noncoding regions may be more functionally important than previously assumed. In total, the results demonstrate the necessity of interpreting genomic footprints of selection in the context of demographic parameters and life‐history features of the studied species. 相似文献
13.
Kevin Winker Kevin G. McCracken Daniel D. Gibson Jeffrey L. Peters 《Molecular ecology》2013,22(23):5922-5935
Heteropatric differentiation is a mode of speciation with gene flow in which divergence occurs between lineages that are in sympatry and allopatry at different times during cyclic spatial movements. Empirical evidence suggests that heteropatric differentiation may prove to be common among seasonally migratory organisms. We examined genetic differentiation between the sedentary Aleutian Islands population of green‐winged teal (Anas crecca‐nimia) and its close migratory relative, the Eurasian, or Old World (OW), Anas c. crecca population, a portion of which passes through the range of nimia during its seasonal migrations. We also examined its relationship with the parapatric North American, New World (NW), A. c. carolinensis population. Sequence data from eight nuclear introns and the mtDNA control region showed that the nimia‐crecca divergence occurred much more recently than the deeper crecca‐carolinensis split (~83 000 years vs. ~1.1 Myr). Despite considerable spatial overlap between crecca and nimia during seasonal migration, three key predictions of heteropatric differentiation are supported: significant genetic divergence (overall mean Φst = 0.07), low gene flow (2Nem ~ 1.8), and an effective population size in nimia that is not especially low (Ne ~ 80 000 individuals). Similar levels of gene flow have come into nimia from carolinensis, but no detectable nuclear gene flow has gone out of nimia into either OW (crecca) or NW (carolinensis) populations. We infer that adaptations of these populations to local optima in different places (e.g. each matching their reproductive effort to different resource blooms) promote genetic isolation and divergence despite periods of sympatry between them, as the heteropatric model predicts. 相似文献
14.
Ecological divergence alone can prevent the majority of gene flow in the absence of other forms of reproductive isolation. Although the importance of ecological divergence in promoting reproductive isolation has been broadly recognized, its net impact on speciation has rarely been estimated in the wild. The phytophagous ladybird beetle Henosepilachna diekei Jadwiszczak & Wegrzynowicz includes two sympatric host races that are reproductively isolated solely by extreme specialization to either of the host plants Mikania micrantha Kunth (Asteraceae) or Leucas lavandulifolia Sm. (Lamiaceae) in West Java, Indonesia. To investigate the impact of differential host use as an isolating barrier, we carried out adult host acceptance tests and molecular population genetic analyses based on mitochondrial ND2 and nucleic ITS2 gene sequences using 13 wild populations of the host races, including four sympatric population pairs. Almost all individuals of these host races persistently accepted only the original host plant. We detected restricted but a degree of gene flow between these host races. A migration event occurred only in very recent time compared to their divergence time, indicating recent secondary contact of these host races in the surveyed area. These results reveal the remarkably large impact of host‐plant shift over almost the entire process of speciation and illustrate that ecological divergence has been maintained even under the presence of a certain degree of gene flow. 相似文献
15.
MELANIA E. CRISTESCU SARAH J. ADAMOWICZ JAMES J. VAILLANT DOUGLAS G. HAFFNER 《Molecular ecology》2010,19(22):4837-4851
Explosive speciation in ancient lakes has fascinated biologists for centuries and has inspired classical work on the tempo and modes of speciation. Considerable attention has been directed towards the extrinsic forces of speciation—the geological, geographical and ecological peculiarities of ancient lakes. Recently, there has been a resurgence of interest in the intrinsic nature of these radiations, the biological characteristics conducive to speciation. While new species are thought to arise mainly by the gradual enhancement of reproductive isolation among geographically isolated populations, ancient lakes provide little evidence for a predominant role of geography in speciation. Recent phylogenetic work provides strong evidence that multiple colonization waves were followed by parallel intralacustrine radiations that proceeded at relatively rapid rates despite long‐term gene flow through hybridization and introgression. Several studies suggest that hybridization itself might act as a key evolutionary mechanism by triggering major genomic reorganization/revolution and enabling the colonization of new ecological niches in ancient lakes. These studies propose that hybridization is not only of little impediment to diversification but could act as an important force in facilitating habitat transitions, promoting postcolonization adaptations and accelerating diversification. Emerging ecological genomic approaches are beginning to shed light on the long‐standing evolutionary dilemma of speciation in the face of gene flow. We propose an integrative programme for future studies on speciation in ancient lakes. 相似文献
16.
Several key characteristics of the species-rich orchid familyare due to its symbiotic relationships with pollinators andmycorrhizal fungi. The majority of species are insect pollinatedand show strong adaptations for outcrossing, such as pollinationby food- and sexual-deception, and all orchids are reliant onmycorrhizal fungi for successful seedling establishment. Recentstudies of orchid pollination biology have shed light on thebarriers to reproductive isolation important to diversificationin different groups of deceptive orchids. Molecular identificationof orchid mycorrhizal fungi has revealed high fungal specificityin orchids that obtain organic nutrients from fungi as adults.Both pollinator and fungal specificity have been proposed asdrivers of orchid diversification. Recent findings in orchidpollination and mycorrhizal biology are reviewed and it is shownthat both associations are likely to affect orchid distributionand population structure. Integrating studies of these symbioseswill shed light on the unparalleled diversification of the orchidfamily. Key words: Mutualism, myco-heterotrophy, pollinator limitation, speciation
Received 5 October 2007; Revised 12 December 2007 Accepted 21 December 2007 相似文献
17.
Hung N. Nguyen Chia‐Wei Lu Jui‐Hua Chu Larry Lee Grismer Chih‐Ming Hung Si‐Min Lin 《Molecular ecology》2019,28(4):772-784
Specialization in narrow ecological niches may not only help species to survive in competitive or unique environments but also contribute to their extermination over evolutionary time. Although the “evolutionary dead end” hypothesis has long been debated, empirical evidence from species with detailed information on niche specialization and evolutionary history remains rare. Here we use a group of four closely related Cnemaspis gecko species that depend highly on granite boulder caves in the Mekong Delta to investigate the potential impact of ecological specialization on their evolution and population dynamics. Isolated by unsuitable floodplain habitats, these boulder‐dwelling geckos are among the most narrowly distributed Squamata in the world. We applied several coalescence‐based approaches combined with the RAD‐seq technique to estimate their divergence times, gene flow and demographic fluctuations during the speciation and population differentiation processes. Our results reveal long‐term population shrinkage in the four geckos and limited gene flow during their divergence. The results suggest that the erosion and fragmentation of the granite boulder hills have greatly impacted population divergence and declines. The habitat specialization of these geckos has led to fine‐scaled speciation in these granite rocky hills; in contrast, specialization might also have pushed these species toward the edge of extinction. Our study also emphasizes the conservation urgency of these vulnerable, cave‐dependent geckos. 相似文献
18.
Ecological divergence plays a prominent role in the process of speciation, but how divergence occurs in the face of gene flow is still less clear, and remains controversial among evolutionists. Here we investigated the nucleotide diversity, divergence and gene flow between Oryza nivara and O. rufipogon using sequences of seven chloroplast and nuclear loci. By analysing samples from 26 wild populations across the geographic ranges of the two species, we showed that both species were highly structured and O. rufipogon maintained a higher level of species‐wide diversity than O. nivara. Notably, phylogenetic, amova and FST analyses were unable to detect significant nucleotide differentiation between the two species. We estimated that the two species began to diverge at c. 0.16 million years ago. Our coalescent‐based simulations strongly rejected the simple isolation model of zero migration between species, but rather provided unambiguous evidence of bidirectional gene flow between species, particularly from O. rufipogon to O. nivara. Our simulations also indicated that gene flow was recurrent during the divergence process rather than arising from secondary contact after allopatric divergence. In conjunction with different morphological and life‐history traits and habitat preference in the two species, this study supports the hypothesis that these Oryza species are better treated as ecotypes that diverged quite recently and are still under the process of divergence. Importantly, we demonstrate the ecological divergence between O. rufipogon and O. nivara in the presence of significant gene flow, implying that natural selection plays a primary role in driving the divergence of the two Oryza species. 相似文献
19.
物种形成是基本的进化过程, 也是生物多样性形成的基础。自然选择可以导致新物种的产生。生态物种形成是指以生态为基础的歧化选择使不同群体分化产生生殖隔离的物种形成过程。本文首先回顾了生态物种形成的研究历史, 并详细介绍了生态物种形成的3个要素, 即歧化选择的来源、生殖隔离的形式以及关联歧化选择与生殖隔离的遗传机制。歧化选择的来源主要包括不同的环境或生态位、不同形式的性选择, 以及群体间的相互作用。生殖隔离的形式多种多样, 我们总结了合子前和合子后隔离的遗传学机制以及在生态物种形成中起到的作用。控制适应性性状的基因与导致生殖隔离的基因可以通过基因多效性或连锁不平衡相互关联起来。借助于第二代测序技术, 研究者可以对生态物种形成的遗传学与基因组学基础进行研究。此外, 本文还总结了生态物种形成领域最新的研究进展, 包括平行进化的全基因组基础, 以及基因流影响群体分化的理论基础。通过归纳比较由下至上和由上至下这两种不同的研究思路, 作者认为这两种思路的结合可以为生态物种形成基因的筛选提供更有力也更精确的方法。同时, 作者还提出生态物种形成的研究应该基于更好的表型描述以及更完整的基因组信息, 研究的物种也应该具有更广泛的代表性。 相似文献
20.
Lauren Assour Thomas H.Q. Powell Glen R. Hood Scott Emrich Patrik Nosil Jeffrey L. Feder 《Ecology letters》2015,18(8):817-825
Theory predicts that speciation‐with‐gene‐flow is more likely when the consequences of selection for population divergence transitions from mainly direct effects of selection acting on individual genes to a collective property of all selected genes in the genome. Thus, understanding the direct impacts of ecologically based selection, as well as the indirect effects due to correlations among loci, is critical to understanding speciation. Here, we measure the genome‐wide impacts of host‐associated selection between hawthorn and apple host races of Rhagoletis pomonella (Diptera: Tephritidae), a model for contemporary speciation‐with‐gene‐flow. Allele frequency shifts of 32 455 SNPs induced in a selection experiment based on host phenology were genome wide and highly concordant with genetic divergence between co‐occurring apple and hawthorn flies in nature. This striking genome‐wide similarity between experimental and natural populations of R. pomonella underscores the importance of ecological selection at early stages of divergence and calls for further integration of studies of eco‐evolutionary dynamics and genome divergence. 相似文献