首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
Background and Aims Enhanced availability of photosynthates increases nitrogen (N) mineralization and nitrification in the rhizosphere via rhizodeposition from plant roots. Under heterogeneous light conditions, photosynthates supplied by exposed ramets may promote N assimilation in the rhizosphere of shaded, connected ramets. This study was conducted to test this hypothesis.Methods Clonal fragments of the stoloniferous herb Glechoma longituba with two successive ramets were selected. Mother ramets were subjected to full sunlight and offspring ramets were subjected to 80 % shading, and the stolon between the two successive ramets was either severed or left intact. Measurements were taken of photosynthetic and growth parameters. The turnover of available soil N was determined together with the compostion of the rhizosphere microbial community.Key Results The microbial community composition in the rhizosphere of shaded offspring ramets was significantly altered by clonal integration. Positive effects of clonal integration were observed on NAGase activity, net soil N mineralization rate and net soil N nitrification rate. Increased leaf N and chlorophyll content as well as leaf N allocation to the photosynthetic machinery improved the photosynthetic capability of shaded offspring ramets when the stolon was left intact. Clonal integration improved the growth performance of shaded, connected offspring ramets and whole clonal fragments without any cost to the exposed mother ramets.Conclusions Considerable differences in microbial community composition caused by clonal integration may facilitate N assimilation in the rhizosphere of shaded offspring ramets. Increased N content in the photosynthetic machinery may allow pre-acclimation to high light conditions for shaded offspring ramets, thus promoting opportunistic light capture. In accordance with the theory of the division of labour, it is suggested that clonal integration may ameliorate the carbon assimilation capacity of clonal plants, thus improving their fitness in temporally and spatially heterogeneous habitats.  相似文献   

2.
克隆整合对异质性盐分胁迫下积雪草生长的影响   总被引:1,自引:0,他引:1  
以匍匐茎草本克隆植物积雪草(Centella asiatica)为材料进行盆栽试验,研究了克隆整合特性对异质性盐分胁迫条件下植物生长的影响。试验中将远端分株(较幼分株)分别处于盐分胁迫或正常土壤条件下,切断或保持其与近端分株(较老分株)间的匍匐茎连接。结果表明:盐分胁迫下,克隆整合提高了受胁迫远端分株和整个克隆片断的叶面积和生物量等生长指标;与未遭受盐分胁迫处理相比,匍匐茎连接处理导致远端分株的根冠比显著降低。克隆整合还减轻了盐分胁迫对分株的叶绿素含量和光化学效率的影响,但盐分胁迫下,匍匐茎连接处理远端分株的净光合速率与匍匐茎切断处理远端分株并无显著差异,连接受胁迫的远端分株并没有引起近端分株生物量的明显损耗以及光合速率的补偿性提高。总之,克隆整合促进了积雪草遭受盐分胁迫的分株和整个克隆片段的生长,这对于丰富和发展异质性环境胁迫下克隆植物的生态适应对策具有重要意义。  相似文献   

3.
On Ordos plateau, a semi-arid, desertified area in China, sand burial is a common stress factor for plants. The extent to which sand burial occurs is heterogeneous and unpredictable in space and in time. Therefore, clonal fragments (i.e., interconnected ramets of a clonal plant) often experience partial sand burial, with some ramets buried in sand while the rest may remain unburied. It was hypothesized that clonal fragments are able to benefit from clonal integration, in case they experience partial sand burial. A pot experiment was conducted with Potentilla anserina, a stoloniferous herb often found on Ordos plateau. We used clonal fragments consisting of four interconnected ramets. In the experiment, the two proximal (older) ramets were unburied while the two distal (younger) ramets were either unburied (control) or buried with a 2, 4 or 6 cm deep layer of sand (burial treatments). The stolon connection between the proximal and the distal ramets was either severed or left intact. Stolon severing dramatically decreased the survival of buried ramets. Stolon severing and sand burial had significant effects on plant performance in terms of biomass production, number of leaves and leaf area. A cost–benefit analysis based on performance measures shows that the proximal ramets supported their connected distal ramets and did not incur any cost from this resource export. These results suggest that clonal integration, which is one of the functionally most important consequences of clonal growth, contributes significantly to our test species' capacity to withstand partial sand burial on Ordos plateau, a semi-arid and desertified area of China.  相似文献   

4.
 采用盆栽试验研究了异质性重金属镉胁迫下, 克隆整合对匍匐茎草本植物积雪草(Centella asiatica)生长的影响。将远端分株(相对年幼的分株)分别置于对照和镉胁迫处理下, 并对远端分株与近端分株(相对年长的分株)之间的匍匐茎进行切断或保持连接处理。研究结果显示: 镉胁迫处理显著降低了积雪草远端分株的净光合速率(Pn)、最大光量子产量(Fv/Fm)、叶绿素含量、叶面积、分株数和生物量; 克隆整合缓解了镉胁迫对远端分株生长的不利影响; 克隆整合不仅未导致相连近端分株的损耗, 而且相连近端分株的光合效率也没有表现出补偿性增加; 克隆整合降低了远端受胁迫分株的根冠比, 从而使之减少了对土壤中重金属镉的吸收; 匍匐茎切断和镉胁迫处理对近端分株、远端分株的叶柄长没有显著的影响。结果表明: 克隆整合提高了积雪草遭受镉胁迫的远端分株的生长, 改变了其生物量分配格局, 并有助于整个克隆片段在异质性重金属胁迫下的生长。该研究对于丰富和发展异质性环境胁迫下克隆整合的生态适应对策具有重要意义。  相似文献   

5.
王宁  高艳 《生态科学》2011,30(2):97-101
研究了两种践踏胁迫下克隆整合对入侵植物空心莲子草生长的影响.结果表明:(1)切断分株间的匍匐茎连接,会降低先端分株的生物量、分株数、总匍匐茎长度和总叶片数,但会显著增强基端分株的生物量.(2)对先端分株的践踏胁迫会显著降低先端分株叶片的叶绿素相对含量,对基端分株的践踏胁迫会显著降低基端分株的生物量和总匍匐茎长度.(3)对于基端分株的分株数、总匍匐茎长度和总叶片数来说,当进行基端分株践踏胁迫时,匍匐茎连接对其影响不大,而当进行先端分株践踏胁迫时,则明显对其不利.(4)对于整个克隆片段,践踏胁迫的差异和匍匐茎是否切断对其生长没有显著影响.  相似文献   

6.
自然界中植物生长所需资源通常呈异质性分布, 具有发达匍匐茎的野牛草(Buchloe dactyloides)在蔓延过程中相连克隆分株常生活在异质性的光环境中。有研究证明, 在异质性光条件下, 植株幼叶的叶片解剖结构受成熟叶所处光照条件的影响, 而异质性光条件下克隆分株的叶片形态解剖结构是否也受相连分株所处光照条件的影响则未见报道。通过设置高光(全光照)和低光(遮阴)两个水平, 对由匍匐茎相连的野牛草克隆分株施以同质和异质性光处理, 研究了异质性光对野牛草叶片解剖结构的影响。结果发现: 在异质性光环境中, 遮阴的野牛草克隆分株的主脉直径、维管束鞘细胞个数、叶片厚度以及近轴侧和远轴侧叶肉细胞的厚度均显著降低; 同质性的低光处理对这些指标则没有显著影响。在异质性光处理下, 未遮阴姊株近轴侧和远轴侧叶肉细胞的厚度以及远轴侧的气孔大小显著增加, 而未遮阴的妹株近轴侧和远轴侧叶肉细胞的厚度、气孔密度和气孔大小、叶片厚度和维管束鞘细胞个数则会降低。同质高光处理下克隆分株近轴侧和远轴侧的气孔密度和气孔大小显著高于同质低光。野牛草克隆分株近轴侧和远轴侧叶肉细胞的厚度、气孔密度和气孔大小受相连分株所处光照条件的显著影响。该研究结果表明: 未遮阴的姊株因为与遮阴的妹株相连而显著受益, 而未遮阴的妹株则因为与遮阴的姊株相连而损耗严重; 在异质性光处理下, 遮阴分株叶片形态上缩减的可塑性生长是为减少维持其存活的消耗, 提高遮阴分株存活率的一种适应性表现。  相似文献   

7.
研究了3种来自中国北方林下、草地和碱化草甸匍匐茎型克隆草本植物绢毛匍匐委陵菜 (Potentilla reptans L. var. sericophylla Franch.)、鹅绒委陵菜 (P. anserina L.) 和金戴戴 (Halerpestes ruthenica (Jacq.) Qvcz.) 对由高光照低养分斑块和低光照高养分斑块组成的资源交互斑块性生境的适应性对策.当生长于高光照低养分条件下分株 (HL分株) 与生长于低光照高养分条件下分株 (LH分株) 之间的匍匐茎连接时, 3种克隆植物HL分株、LH分株以及整个分株对系统 (HL分株 + LH分株) 的生物量均得到显著提高.同时, LH分株根冠比显著增加, 而HL分株根冠比显著下降.这表明, 当互连分株置于由低光照高养分斑块和高光照低养分斑块组成的异质性环境中时, 3种植物克隆分株均发生了环境诱导的功能特化.克隆内资源共享以及克隆内不同分株的功能特化有利于整个分株系统对局部丰富资源的获取, 从而能够缓解资源交互斑块性生境对克隆植物的不利影响.  相似文献   

8.
研究了 3种来自中国北方林下、草地和碱化草甸匍匐茎型克隆草本植物绢毛匍匐委陵菜 (PotentillareptansL .var.sericophyllaFranch .)、鹅绒委陵菜 (P .anserinaL .)和金戴戴 (Halerpestesruthenica (Jacq .)Qvcz .)对由高光照低养分斑块和低光照高养分斑块组成的资源交互斑块性生境的适应性对策。当生长于高光照低养分条件下分株(HL分株 )与生长于低光照高养分条件下分株 (LH分株 )之间的匍匐茎连接时 ,3种克隆植物HL分株、LH分株以及整个分株对系统 (HL分株 LH分株 )的生物量均得到显著提高。同时 ,LH分株根冠比显著增加 ,而HL分株根冠比显著下降。这表明 ,当互连分株置于由低光照高养分斑块和高光照低养分斑块组成的异质性环境中时 ,3种植物克隆分株均发生了环境诱导的功能特化。克隆内资源共享以及克隆内不同分株的功能特化有利于整个分株系统对局部丰富资源的获取 ,从而能够缓解资源交互斑块性生境对克隆植物的不利影响  相似文献   

9.
在深度遮光(光照强度为高光条件的6.25%,约为自然光照的5.3%)或低养分条件下,金戴戴(Halerpestes ruthenica Ovcz.)生物量、初级分株叶面积、分株总数、匍匐茎总数和总长度均显著减小,而比节间长和比叶柄长显著增加.在低养分条件下,金戴戴匍匐茎平均节间长显著增加,而匍匐茎分枝强度和分株数显著减小.这些结果与克隆植物觅食模型相符合,表明当生长于异质性生境中,金戴戴可能通过以克隆生长和克隆形态的可塑性实现的觅养行为来增加对养分资源的摄取.在深度遮光条件下,金戴戴平均间隔子长度(即平均节间长和平均叶柄长)均显著减小.这一结果与以往实验中匍匐茎草本间隔子对中度和轻度遮光(光照强度为高光条件的13%~75%,>10%的自然光照)的反应不同.这表明,在深度遮光条件下匍匐茎克隆植物可能不发生通过间隔子可塑性实现的觅光行为.光照强度和基质养分条件的交互作用对许多性状如总生物量、匍匐茎总数和总长度、二级和三级分株数、分株总数、初级分株叶面积以及分枝强度均有十分显著的效应.在高光条件下,基质养分对这些性状有十分显著的影响;而在低光条件下,基质养分条件对这些性状不产生影响或影响较小.这表明,光照强度影响金戴戴对基质养分的可塑性反应.在深度遮光或低养分条件下,金戴戴可能通过减小匍匐茎节间粗度(增加比节间长)来增加或维持其相对长度,从而更有机会逃离资源丰度低的斑块.  相似文献   

10.
在深度遮光 (光照强度为高光条件的 6 .2 5% ,约为自然光照的 5.3% )或低养分条件下 ,金戴戴 (HalerpestesruthenicaOvcz.)生物量、初级分株叶面积、分株总数、匍匐茎总数和总长度均显著减小 ,而比节间长和比叶柄长显著增加。在低养分条件下 ,金戴戴匍匐茎平均节间长显著增加 ,而匍匐茎分枝强度和分株数显著减小。这些结果与克隆植物觅食模型相符合 ,表明当生长于异质性生境中 ,金戴戴可能通过以克隆生长和克隆形态的可塑性实现的觅养行为来增加对养分资源的摄取。在深度遮光条件下 ,金戴戴平均间隔子长度 (即平均节间长和平均叶柄长 )均显著减小。这一结果与以往实验中匍匐茎草本间隔子对中度和轻度遮光 (光照强度为高光条件的 1 3%~ 75% ,>1 0 %的自然光照 )的反应不同。这表明 ,在深度遮光条件下匍匐茎克隆植物可能不发生通过间隔子可塑性实现的觅光行为。光照强度和基质养分条件的交互作用对许多性状如总生物量、匍匐茎总数和总长度、二级和三级分株数、分株总数、初级分株叶面积以及分枝强度均有十分显著的效应。在高光条件下 ,基质养分对这些性状有十分显著的影响 ;而在低光条件下 ,基质养分条件对这些性状不产生影响或影响较小。这表明 ,光照强度影响金戴戴对基质养分的可塑性反应。在深度遮光  相似文献   

11.
  • One benefit of clonal integration is that resource translocation between connected ramets enhances the growth of the ramets grown under stressful conditions, but whether such resource translocation reduces the performance of the ramets grown under favourable conditions has not produced consistent results. In this study, we tested the hypothesis that resource translocation to recipient ramets may reduce the performance of donor ramets when resources are limiting but not when resources are abundant.
  • We grew Mikania micrantha stolon fragments (each consisting of two ramets, either connected or not connected) under spatially heterogeneous competition conditions such that the developmentally younger, distal ramets were grown in competition with a plant community and the developmentally older, proximal ramets were grown without competition. For half of the stolon fragments, slow‐release fertiliser pellets were applied to both the distal and proximal ramets.
  • Under both the low and increased soil nutrient conditions, the biomass, leaf number and stolon length of the distal ramets were higher, and those of the proximal ramets were lower when the stolon internode was intact than when it was severed. For the whole clone, the biomass, leaf number and stolon length did not differ between the two connection treatments. Connection did not change the biomass of the plant communities competing with distal ramets of M. micrantha.
  • Although clonal integration may promote the invasion of M. micrantha into plant communities, resource translocation to recipient ramets of M. micrantha will induce a cost to the donor ramets, even when resources are relatively abundant.
  相似文献   

12.
A greenhouse experiment examined whether clonal integration improves photosynthesis of ramets of alligator weed [Alternanthera philoxeroides (Mart.) Griseb.], a widespread invasive clonal plant in China, in heterogeneous (He) nutrient habitats. The connected pairs of ramets experienced different nutrient levels [high homogeneous (Ho) nutrient, low Ho nutrient, and two He nutrient treatments]. Clonal integration significantly improved the net photosynthetic rate, stomatal conductance, transpiration rate, and minimal and maximal chlorophyll fluorescence of ramets of alligator weed in low nutrient condition. These characteristics may contribute to the success of the ramets of alligator weed in invading contrasting habitats. The clonal integration of the invasive clonal plants may contribute significantly to their invasiveness.  相似文献   

13.
Effects of clonal integration on land plants have been extensively studied, but little is known about the role in amphibious plants that expand from terrestrial to aquatic conditions. We simulated expansion from terrestrial to aquatic habitats in the amphibious stoloniferous alien invasive alligator weed ( Alternanthera philoxeroides ) by growing basal ramets of clonal fragments in soils connected (allowing integration) or disconnected (preventing integration) to the apical ramets of the same fragments submerged in water to a depth of 0, 5, 10 or 15 cm. Clonal integration significantly increased growth and clonal reproduction of the apical ramets, but decreased both of these characteristics in basal ramets. Consequently, integration did not affect the performance of whole clonal fragments. We propose that alligator weed possesses a double-edged mechanism during population expansion: apical ramets in aquatic habitats can increase growth through connected basal parts in terrestrial habitats; however, once stolon connections with apical ramets are lost by external disturbance, the basal ramets in terrestrial habitats increase stolon and ramet production for rapid spreading. This may contribute greatly to the invasiveness of alligator weed and also make it very adaptable to habitats with heavy disturbance and/or highly heterogeneous resource supply.  相似文献   

14.
Wang P  Lei JP  Li MH  Yu FH 《PloS one》2012,7(6):e39105
Spatial heterogeneity in light supply is common in nature. Many studies have examined the effects of heterogeneous light supply on growth, morphology, physiology and biomass allocation of clonal plants, but few have tested those effects on intraspecific competition. In a greenhouse experiment, we grew one (no competition) or nine ramets (with intraspecific competition) of a stoloniferous clonal plant, Duchesnea indica, in three homogeneous light conditions (high, medium and low light intensity) and two heterogeneous ones differing in patch size (large and small patch treatments). The total light in the two heterogeneous treatments was the same as that in the homogeneous medium light treatment. Both decreasing light intensity and intraspecific competition significantly decreased the growth (biomass, number of ramets and total stolon length) of D. indica. As compared with the homogeneous medium light treatment, the large patch treatment significantly increased the growth of D. indica without intraspecific competition. However, the growth of D. indica with competition did not differ among the homogeneous medium light, the large and the small patch treatments. Consequently, light heterogeneity significantly increased intraspecific competition intensity, as measured by the decreased log response ratio. These results suggest that spatial heterogeneity in light supply can alter intraspecific interactions of clonal plants.  相似文献   

15.
克隆整合有助于狗牙根抵御水淹   总被引:8,自引:1,他引:7       下载免费PDF全文
尽管国内外开展了大量的克隆整合对克隆植物抵御逆境能力影响的研究, 但整合对植物抵御水淹能力的影响研究仍比较缺乏。该文从克隆整合的角度探讨多年生草本植物狗牙根(Cynodon dactylon)对水淹胁迫的响应。试验模拟了先端分株(相对年幼的分株)分别处于0、5和15 cm三种水淹胁迫环境, 并在每个水淹梯度下实施先端分株与基端分株(相对年长的分株)之间匍匐茎连接或切断处理, 调查水淹一个月后基端分株和先端分株以及整个克隆片段在形态和生理上的表现。研究发现: 切断匍匐茎连接显著降低了狗牙根先端分株的生长, 表现在生物量下降、匍匐茎长度减短和分株数减少等方面; 水淹显著抑制了先端分株的生长, 但对基端分株的生长并未造成显著影响; 在5 cm水淹处理下, 匍匐茎保持连接时, 先端分株和整个克隆片段的生长显著增加; 连接或切断处理在不同水淹梯度下对匍匐茎平均节间长没有显著影响, 对先端分株或基端分株在光化学转化效率上也未表现显著性差异。结果表明: 克隆整合效应促进了狗牙根在水淹胁迫下分株的生长, 并有助于整个克隆片段抵御水淹胁迫。  相似文献   

16.
Some clonal plants can spread their ramet populations radially, and soil heterogeneity and clonal integration may greatly affect the establishment of these types of populations. We constructed Alternanthera philoxeroides populations with a radial ramet aggregation, allowing old ramets of clonal fragments to concentrate in central pots and younger ramets to root in peripheral pots. The peripheral pots were supplemented either with three different levels (high, medium and low) of soil nutrients to simulate a heterogeneous soil environment, or only one medium level of soil nutrients to simulate a homogeneous environment. Stolon connections between the central older ramets and the peripheral younger ramets were left intact or severed to test the effect of clonal integration. The maintenance of stolon connection could induce the division of labor between different‐aged ramets, by increasing the root investment in central ramets and the above‐ground growth in peripheral ramets. The maintenance of stolon connection could improve the growth of the central and peripheral ramets, clonal fragments and even the whole population. However, the positive consequence in peripheral ramets and whole fragments was only detected in the high‐nutrient patch of heterogeneous treatment. In sum, in the population with the radial ramet aggregation, clonal integration can play a key role in the rapid recruitment of young ramets of A. philoxeroides fragments, as well as the expansion of the whole population. The magnitude of clonal integration also became more obvious in the peripheral young ramets and whole fragments that experienced high‐nutrient patches.  相似文献   

17.
Clonal growth allows plants to spread horizontally and to experience different levels of resources. If ramets remain physiologically integrated, clonal plants can reciprocally translocate resources between ramets in heterogeneous environments. But little is known about the interaction between benefits of clonal integration and patterns of resource heterogeneity in different patches, i.e., coincident patchiness or reciprocal patchiness. We hypothesized that clonal integration will show different effects on ramets in different patches and more benefit to ramets under reciprocal patchiness than to those under coincident patchiness, as well as that the benefit from clonal integration is affected by the position of proximal and distal ramets under reciprocal or coincident patchiness. A pot experiment was conducted with clonal fragments consisting of two interconnected ramets (proximal and distal ramet) of Fragaria orientalis. In the experiment, proximal and distal ramets were grown in high or low availability of resources, i.e., light and water. Resource limitation was applied either simultaneously to both ramets of a clonal fragment (coincident resource limitation) or separately to different ramets of the same clonal fragment (reciprocal resource limitation). Half of the clonal fragments were connected while the other half were severed. From the experiment, clonal fragments growing under coincident resource limitation accumulated more biomass than those under reciprocal resource limitation. Based on a cost-benefit analysis, the support from proximal ramets to distal ramets was stronger than that from distal ramets to proximal ramets. Through division of labour, clonal fragments of F. orientalis benefited more in reciprocal patchiness than in coincident patchiness. While considering biomass accumulation and ramets production, coincident patchiness were more favourable to clonal plant F. orientalis.  相似文献   

18.
《Aquatic Botany》2007,86(1):76-82
Interconnected ramets of the submersed macrophyte Vallisneria spiralis were subjected to two homogeneous treatments (shading or not shading whole plants) and two heterogeneous treatments (only shading basal or apical ramets of plants). The benefits and costs of clonal integration between connected ramets grown in heterogeneous treatments were examined. Results showed that shading apical ramets induced significant benefits to the performance of whole plant in terms of dry weight per plant (P < 0.01) and number of ramets per plant (P < 0.05). Especially for the unshaded basal ramets, their dry weight, number of ramets, number of branches and total stolon length were 89%, 30%, 29% and 58% higher than the corresponding ramets in homogeneous treatment, respectively. Compared to their controls in homogeneous treatments, unshaded basal ramets produced more leaf mass (0.15 g versus 0.11 g) whereas shaded apical ramets produced more root mass (0.012 g versus 0.008 g). However, there was a different pattern of integration when basal ramets were shaded. Shading basal ramets led to a significant decrease in stolon growth, but the individual performance of shaded ramets improved. Cost-benefit analyses revealed that dry weight per ramet of basal shaded ramets was 31% greater than that of basal shaded ramets in the homogeneous treatment. We can conclude that V. spiralis can benefit from clonal integration in heterogeneous light environments, but that the scale of these benefits is related to the quality of light environments where the clone become established.  相似文献   

19.
Gómez S  Stuefer JF 《Oecologia》2006,147(3):461-468
The stoloniferous herb Trifolium repens was used to study the expression of induced systemic resistance (ISR) to the generalist caterpillar Spodoptera exigua in interconnected ramets of clonal fragments. The ISR was assessed as caterpillar preference in dual choice tests between control and systemically induced plants. The ISR was detected in young ramets, after inducing older sibling ramets on the same stolon by a controlled herbivore attack. However, older ramets did not receive a defense induction signal from younger ramets unless the predominant phloem flow was reversed by means of basal shading. This provides evidence for the notion that in T. repens the clone-internal expression of ISR is coupled to phloem transport and follows source–sink gradients. The inducibility of the genotypes was not linked to their constitutive ability to produce cyanide, implying the absence of a trade-off between these two defense traits. To our knowledge, this is the first study that explores ISR to herbivory in the context of physiological integration in potentially extensive clonal plant networks.  相似文献   

20.
张云  陈劲松 《广西植物》2017,37(6):757-762
以根状茎克隆植物紫竹为对象,研究克隆整合对遭受异质性光照胁迫分株根际土壤有机碳(SOC)、总氮(TN)、溶解性有机碳(DOC)、溶解性有机氮(DON)、氨氮(NH_4~+-N)、硝态氮(NO_3~--N)以及微生物群落组成的影响。所取紫竹克隆片段由一个母本分株和一个子代分株组成,母本分株置于全光照下,而子代分株置于80%遮阴环境中,同时母本分株与子代分株间的根茎保持连接或割断处理。结果表明:与切断处理相比,紫竹遮荫子代分株根际土壤的SOC、TN、DOC、NH_4~+-N在保持根状茎连接时显著更高,这表明异质性光照环境下克隆整合可能改善紫竹连接遮荫子代分株根际土壤的氮素有效性。克隆整合提高了连接遮阴状态下紫竹子代分株根际土壤中的放线菌、真菌和革阴细菌的PLFAs浓度。通过对遮阴子代分株根际土壤微生物群落PLFAs主成分分析得出克隆整合导致遮阴子代分株根际土壤微生物群落结构发生显著变化。该研究结果暗示了紫竹可能通过克隆整合作用降低土壤中某些对氮利用有效性影响较低的细菌数量,而增加对土壤氮利用起重要作用的放线菌和真菌的数量,进而改善紫竹对土壤中氮利用的有效性,这有利于增强克隆植物对时空异质性生境的适应能力。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号