首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Functional analysis of receptor-like kinases in monocots and dicots   总被引:2,自引:0,他引:2  
Receptor-like kinases (RLKs) are signaling proteins that feature an extracellular domain connected via a transmembrane domain to a cytoplasmic kinase. This architecture indicates that RLKs perceive external signals, transducing them into the cell. In plants, RLKs were first implicated in the regulation of development, in pathogen responses, and in recognition events. RLKs comprise a major gene family in plants, with more than 600 encoded in the Arabidopsis genome and more than 1100 found in rice genomes. The greater number of RLKs in rice is mostly attributable to expansions in the clades that are involved in pathogen responses. Recent functional studies in both monocots and dicots continue to identify individual RLKs that have similar developmental and abiotic stress roles. Analysis of closely related RLKs reveals that family members might have overlapping roles but can also possess distinct functions.  相似文献   

2.
类受体激酶是一类具有激酶活性的单次跨膜受体,通过接收和传递胞外信号调控细胞的生理反应,参与植物生长发育过程。植物根在生长发育过程中受到大量的外部刺激和内源性发育信号的影响,植物必须通过整合这些信号并转化为细胞反应,才能适应不断变化的环境条件;植物类受体激酶作为细胞膜上的信息监测者,通过与外源和内源信号的通讯调控根的生长发育。该文对近年来国内外有关类受体激酶的结构、分类及其作用机制,特别是植物类受体激酶在根发育信号转导途径中的功能和作用等方面的研究进展进行综述,为进一步揭示植物类受体激酶在根生长发育中的功能及其作用机制提供参考。  相似文献   

3.
Challenges in understanding RLK function   总被引:10,自引:0,他引:10  
Plants use receptor-like kinases (RLKs) to transduce extracellular signals into the cell. Recent advancements in RLK research include the cloning of the BRASSINOSTEROID INSENSITIVE 1 and CLAVATA 1 genes, revealing RLK roles in development. Our understanding of RLK function has also been broadened by transgenic approaches in the study of the RLKs pollen receptor kinase 1, and wall associated kinase 1. These results extend the observations that RLKs function in developmental processes and plant defense responses. Additionally, expression based studies suggest roles for other newly reported RLKs in development and light responses. Taken together, the studies confirm the importance of RLKs in diverse plant processes, yet major challenges remain. These include identifying ligands that activate RLKs and characterizing downstream pathways. These challenges can be conquered by coordinated efforts from investigators using molecular, genetic, and biochemical approaches.  相似文献   

4.
Recent plant genome analyses have revealed a large number of genes encoding receptor-like kinases (RLKs) in plants. Theyare transmembrane proteins structurally related to the animal tyrosine and serin/threonine families with differences in their extracellular domains. There are more than 20 classes of plant RLKs, distinguished according to their extracellular domains, which can potentially bind an array of molecules. Although the majority of these RLKs remains uncharacterized, several members of this family are known to function in a diverse biological processes including plant growth and development, self-incompatibility, hormone perception and plant-microbe interactions. Despite knowledge of RLKs functions is increasing rapidly, yet major challenges remain. These include identifying ligands that activate RLKs and characterizing downstream pathways.  相似文献   

5.
Receptor-like protein kinases (RLKs) are transmembrane proteins crucial for cell-to-cell and cell-to-environment communications. The extracellular domain of a RLK is responsible for perception of a specific extracellular ligand to trigger a unique intercellular signaling cascade, often via phosphorylation of cellular proteins. The signal is then transduced to the nucleus of a cell where it alters gene expression. There are more than 610 RLKs in Arabidopsis thaliana, only a handful of them have been functionally characterized. This review focuses on recent advances in our understanding of a small group of RLKs named somatic embryogenesis receptor-like protein kinases (SERKs). SERKs act as coreceptors in multiple signaling pathways via their physical interactions with distinct ligand-binding RLKs.  相似文献   

6.
Structure and function of the receptor-like protein kinases of higher plants   总被引:25,自引:0,他引:25  
Cell surface receptors located in the plasma membrane have a prominent role in the initiation of cellular signalling. Recent evidence strongly suggests that plant cells carry cell surface receptors with intrinsic protein kinase activity. The plant receptor-like protein kinases (RLKs) are structurally related to the polypeptide growth factor receptors of animals which consist of a large extracytoplasmic domain, a single membrane spanning segment and a cytoplasmic domain of the protein kinase gene family. Most of the animal growth factor receptor protein kinases are tyrosine kinases; however, the plant RLKs all appear to be serine/threonine protein kinases. Based on structural similarities in their extracellular domains the RLKs fall into three categories: the S-domain class, related to the self-incompatibility locus glycoproteins of Brassica; the leucine-rich repeat class, containing a tandemly repeated motif that has been found in numerous proteins from a variety of eukaryotes; and a third class that has epidermal growth factor-like repeats. Distinct members of these putative receptors have been found in both monocytyledonous plants such as maize and in members of the dicotyledonous Brassicaceae. The diversity among plant RLKs, reflected in their structural and functional properties, has opened up a broad new area of investigation into cellular signalling in plants with far-reaching implications for the mechanisms by which plant cells perceive and respond to extracellular signals.  相似文献   

7.
Knowledge of the functions of plant receptor-like-kinases (RLKs) is increasing rapidly, but how their cytoplasmic signalling activity is regulated and how signals are transduced to cytoplasmic or nuclear proteins remain important questions. Recent studies, particularly of the BRASSINOSTEROID INSENSITIVE1 RLK, have begun to shed light on the mechanistic details of RLK activation, including the possible role of ligand binding. Studies of this and other RLKs have also highlighted the potential importance of hetero-oligomerisation and receptor internalisation in RLK signalling. Finally, a range of potential regulatory proteins and putative downstream signalling substrates have been identified for various RLKs. Despite some similarities with animal receptor kinase signalling systems, mechanisms that affect the intracellular behaviour, regulation and interactions of RLKs appear to be very diverse, potentially explaining how signalling specificity is maintained at the cytoplasmic level.  相似文献   

8.
Receptor-like kinases (RLKs) play a prominent role in the interaction between plants and extracellular pathogens. Intriguingly, in the past few years several studies have demonstrated that a number of RLKs influence plant susceptibility to viruses and, in some cases, interact with viral proteins. In this review, we will summarize and discuss recent advances suggesting a direct role for RLKs in plant–virus interactions.  相似文献   

9.
植物CrRLK1-L亚家族类受体激酶的胞外域具有新颖结构基序,但功能大都未知.该家族成员广泛存在于被子植物中,但在动物和微生物中不存在其同源物.CrRLK1-L家族成员相对较少,但组织表达非常广泛.它们定位于细胞质膜上,并且部分成员的定位还具有极性,这与其参与雌雄配子体的识别和受精作用密切相关.该家族成员普遍具有激酶活性,该活性对其功能的发挥至关重要.目前仅报道在拟南芥中参与助细胞与花粉的识别和调控营养组织的细胞伸长,但参与这些生物学过程的作用机制似乎独立于已知的信号通路之外,可能有自身独特的信号传导机制.所以对这一类具特有结构基序的类受体激酶基因的功能研究,将有助于解析植物特有生物学过程的分子作用机制,特别是在植物有性生殖过程中,合理利用这些分子开展育种实践对未来农业生产具有潜在的应用价值.  相似文献   

10.
11.
植物受体蛋白激酶通过与胞外信号结合感知和接收外部信号传递,在植物各个生理过程及生物代谢中发挥着重大的作用。其中M/MLD类受体蛋白激酶是一类植物特有的具有Malectin-like结构域的受体蛋白激酶。研究表明,M/MLD-RLKs亚家族参与植物发育过程及生物/非生物胁迫调控。该研究对近年来国内外有关植物M/MLD-RLKs的发现、结构特点以及生物学功能等方面的研究进展进行综述,并重点阐述其在调控植物根系、叶片、花发育及响应多种胁迫过程中的作用,为深入研究M/MLD-RLKs在植物生长发育过程中的生理功能提供参考。  相似文献   

12.
自然界中植物的生长发育受到各种环境变化的影响。为了响应外界各种环境条件,植物演化出一系列识别和传递环境信号的蛋白分子,其中比较典型的是植物细胞质膜上的类受体蛋白激酶(RLKs)。凝集素类受体蛋白激酶(LecRLKs)是类受体蛋白激酶家族中的一个亚族,它主要包含3个结构域:细胞外凝集素结构域、跨膜结构域和细胞内激酶结构域。根据细胞外凝集素结构域的不同,LecRLKs可分为3种不同类型:L、G和C型。近年来,研究表明LecRLKs在植物生物/非生物胁迫和发育调控中发挥非常重要的作用。该文综述了植物凝集素类受体蛋白激酶的研究历史、结构特点、分类以及生物学功能,并重点阐述凝集素类受体蛋白激酶在植物生物/非生物胁迫响应和调控发育方面的功能。对不同类型和不同功能的植物凝集素类受体蛋白激酶进行阐述将有利于对该类蛋白开展功能研究,并为作物改良提供有益借鉴。  相似文献   

13.
Receptor-like kinases (RLKs) are a family of transmembrane proteins with versatile N-terminal extracellular domains and C-terminal intracellular kinases. They control a wide range of physiological responses in plants and belong to one of the largest gene families in the Arabidopsis genome with more than 600 members. Interestingly, this gene family constitutes 60% of all kinases in Arabidopsis and accounts for nearly all transmembrane kinases in Arabidopsis. Analysis of four fungal, six metazoan, and two Plasmodium sp. genomes indicates that the family was represented in all but fungal genomes, indicating an ancient origin for the family with a more recent expansion only in the plant lineages. The RLK/Pelle family can be divided into several subfamilies based on three independent criteria: the phylogeny based on kinase domain sequences, the extracellular domain identities, and intron locations and phases. A large number of receptor-like proteins (RLPs) resembling the extracellular domains of RLKs are also found in the Arabidopsis genome. However, not all RLK subfamilies have corresponding RLPs. Several RLK/Pelle subfamilies have undergone differential expansions. More than 33% of the RLK/Pelle members are found in tandem clusters, substantially higher than the genome average. In addition, 470 of the RLK/Pelle family members are located within the segmentally duplicated regions in the Arabidopsis genome and 268 of them have a close relative in the corresponding regions. Therefore, tandem duplications and segmental/whole-genome duplications represent two of the major mechanisms for the expansion of the RLK/Pelle family in Arabidopsis.  相似文献   

14.
Different from animals, sessile plants are equipped with a large receptor-like kinase (RLK) superfamily. RLKs are a family of single trans-membrane proteins with divergent N-terminal extracellular domains capped by a signal peptide and C-terminal intracellular kinase. Researches in the last two decades have uncovered an increasing number of RLKs that regulate plant development, stress response and sexual reproduction, highlighting a dominant role of RLK signaling in cell-to-cell communications. Sexual reproduction in flowering plants is featured by interactions between the male gametophyte and the female tissues to facilitate sperm delivery and fertilization. Emerging evidences suggest that RLKs regulate almost every aspect of plant reproductive process, especially during pollination. Therefore, in this review we will focus mainly on the function and signaling of RLKs in plant male-female interaction and discuss the future prospects on these topics.  相似文献   

15.
Plant receptor-like kinases (RLKs) are transmembrane proteins with putative N-terminal extracellular ligand-binding domains and C-terminal intracellular protein kinase domains. RLKs have been implicated in multiple physiological programs including plant development and immunity to microbial infection. Arabidopsis thaliana gene expression patterns support an important role of this class of proteins in biotic stress adaptation. Here, we provide a comprehensive survey of plant immunity-related RLK gene expression. We further document the role of the Arabidopsis Brassinosteroid Insensitive 1 (BRI1)-associated receptor kinase 1 (BAK1) in seemingly unrelated biological processes, such as plant development and immunity, and propose a role of this protein as an adaptor molecule that is required for proper functionality of numerous RLKs. This view is supported by the identification of an additional RLK, PEPR1, and its closest homolog, PEPR2 as BAK1-interacting RLKs.  相似文献   

16.
The structure of plant receptor-like kinases (RLKs) is similar to that of animal receptor tyrosine kinases (RTKs), and consists of an extracellular domain, a transmembrane span, and a cytoplasmic domain containing the conserved kinase domain. The mechanism by which animal RTKs, and probably plant RLKs, signal includes the dimerization of the receptor, their intermolecular phosphorylation, and the phosphorylation of downstream signalling proteins. However, atypical RTKs with a kinase-dead domain that signal through phosphorylation-independent mechanisms have also been described in animals. In the last few years, some atypical RLKs have also been reported in plants. Here these examples and their possible signalling mechanisms are reviewed. Plant genomes contain a much larger number of genes coding for receptor kinases than other organisms. The prevalence of atypical RLKs in plants is analysed here. A sequence analysis of the Arabidopsis kinome revealed that 13% of the kinase genes do not retain some of the residues that are considered as invariant within kinase catalytic domains, and are thus putatively kinase-defective. This percentage rises to close to 20% when analysing RLKs, suggesting that phosphorylation-independent mechanisms mediated by atypical RLKs are particularly important for signal transduction in plants.  相似文献   

17.
The RLK/Pelle class of proteins kinases is composed of over 600 members in Arabidopsis. Many of the proteins in this family are receptor-like kinases (RLK), while others have lost their extracellular domains and are found as cytoplasmic kinases. Proteins in this family that are RLKs have a variety of extracellular domains that drive function in a large number of processes, from cell wall interactions to disease resistance to developmental control. This review will briefly cover the major subclasses of RLK/Pelle proteins and their roles. In addition, two specific groups on RLKs will be discussed in detail, relating recent findings in Arabidopsis and how well these conclusions have been able to be translated to agronomically important species. Finally, some details on kinase activity and signal transduction will be addressed, along with the mystery of RLK/Pelle members lacking kinase enzymatic activity.  相似文献   

18.
Leucine‐rich repeat receptor‐like kinases (LRR RLKs) form a large family of plant signaling proteins consisting of an extracellular domain connected by a single‐pass transmembrane sequence to a cytoplasmic kinase domain. Autophosphorylation on specific Ser and/or Thr residues in the cytoplasmic domain is often critical for the activation of several LRR RLK family members with proven functional roles in plant growth regulation, morphogenesis, disease resistance, and stress responses. While identification and functional characterization of in vivo phosphorylation sites is ultimately required for a full understanding of LRR RLK biology and function, bacterial expression of recombinant LRR RLK cytoplasmic catalytic domains for identification of in vitro autophosphorylation sites provides a useful resource for further targeted identification and functional analysis of in vivo sites. In this study we employed high‐throughput cloning and a variety of mass spectrometry approaches to generate an autophosphorylation site database representative of more than 30% of the approximately 223 LRR RLKs in Arabidopsis thaliana. We used His‐tagged constructs of complete cytoplasmic domains to identify a total of 592 phosphorylation events across 73 LRR RLKs, with 497 sites uniquely assigned to specific Ser (268 sites) or Thr (229 sites) residues in 68 LRR RLKs. Multiple autophosphorylation sites per LRR RLK were the norm, with an average of seven sites per cytoplasmic domain, while some proteins showed more than 20 unique autophosphorylation sites. The database was used to analyze trends in the localization of phosphorylation sites across cytoplasmic kinase subdomains and to derive a statistically significant sequence motif for phospho‐Ser autophosphorylation.  相似文献   

19.
Plants have evolved multiple layers of defense against various pathogens in the environment. Receptor-like kinases/proteins (RLKs/RLPs) are on the front lines of the battle between plants and pathogens since they are present at the plasma membrane and perceive signature molecules from either the invading pathogen or damaged plant tissue. With a few notable exceptions, most RLKs/RLPs are positive regulators of plant innate immunity. In this review, we summarize recently discovered RLKs/RLPs that are involved in plant defense responses against various classes of pathogens.We also describe what is currently known about the mechanisms of RLK-mediated initiation of signaling via protein-protein interactions and phosphorylation.  相似文献   

20.
Receptor-like kinases (RLKs) belong to the large RLK/Pelle gene family, and it is known that the Arabidopsis thaliana genome contains >600 such members, which play important roles in plant growth, development, and defense responses. Surprisingly, we found that rice (Oryza sativa) has nearly twice as many RLK/Pelle members as Arabidopsis does, and it is not simply a consequence of a larger predicted gene number in rice. From the inferred phylogeny of all Arabidopsis and rice RLK/Pelle members, we estimated that the common ancestor of Arabidopsis and rice had >440 RLK/Pelles and that large-scale expansions of certain RLK/Pelle members and fusions of novel domains have occurred in both the Arabidopsis and rice lineages since their divergence. In addition, the extracellular domains have higher nonsynonymous substitution rates than the intracellular domains, consistent with the role of extracellular domains in sensing diverse signals. The lineage-specific expansions in Arabidopsis can be attributed to both tandem and large-scale duplications, whereas tandem duplication seems to be the major mechanism for recent expansions in rice. Interestingly, although the RLKs that are involved in development seem to have rarely been duplicated after the Arabidopsis-rice split, those that are involved in defense/disease resistance apparently have undergone many duplication events. These findings led us to hypothesize that most of the recent expansions of the RLK/Pelle family have involved defense/resistance-related genes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号