首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cyps (cyclophilins) are ubiquitous proteins of the immunophilin superfamily with proposed functions in protein folding, protein degradation, stress response and signal transduction. Conserved cysteine residues further suggest a role in redox regulation. In order to get insight into the conformational change mechanism and functional properties of the chloroplast-located CYP20-3, site-directed mutagenized cysteine-->serine variants were generated and analysed for enzymatic and conformational properties under reducing and oxidizing conditions. Compared with the wild-type form, elimination of three out of the four cysteine residues decreased the catalytic efficiency of PPI (peptidyl-prolyl cis-trans isomerase) activity of the reduced CYP20-3, indicating a regulatory role of dithiol-disulfide transitions in protein function. Oxidation was accompanied by conformational changes with a predominant role in the structural rearrangement of the disulfide bridge formed between Cys(54) and Cys(171). The rather negative E(m) (midpoint redox potential) of -319 mV places CYP20-3 into the redox hierarchy of the chloroplast, suggesting the activation of CYP20-3 in the light under conditions of limited acceptor availability for photosynthesis as realized under environmental stress. Chloroplast Prx (peroxiredoxins) were identified as interacting partners of CYP20-3 in a DNA-protection assay. A catalytic role in the reduction of 2-Cys PrxA and 2-Cys PrxB was assigned to Cys(129) and Cys(171). In addition, it was shown that the isomerization and disulfide-reduction activities are two independent functions of CYP20-3 that both are regulated by the redox state of its active centre.  相似文献   

2.
Dynamic Light Regulation of Photosynthesis (A Review)   总被引:9,自引:7,他引:2  
Regulatory reactions providing the photosynthetic apparatus with the ability to respond to variations of irradiance by changes in activities of the light and the dark stages of photosynthesis within a time range of seconds and minutes are considered in the review. At the light stage, such reactions are related to the changes in both distribution of light energy between two photosystems and probability of nonphotochemical dissipation of absorbed quanta in PSI and PSII. These regulatory reactions operate in a negative feedback mode, thus avoiding overreduction of electron transport chain and minimizing the probability of generation of reactive oxygen species. The crucial role in preventing the generation of reactive oxygen species belongs to dynamic regulation of electron transport activity despite the presence of complex system of their detoxification in chloroplasts. In dark reactions of Calvin cycle, the regulatory responses involve a positive feedback principle being related to redox regulation of activities of several enzymes, which is sensitive to the reduction status of PSI acceptor side. The complex of regulatory reactions based on negative and positive feedback principles provides prolonged functioning of a chloroplast and high stability of photosynthetic activity under various light conditions.  相似文献   

3.
The effect of anthocyanic cells of the epidermal layer was investigated on photosynthetic activity of the higher plant Tradescantia pallida. To determine the possible indirect role of anthocyanin in photosynthesis, analysis was done on intact leaves and leaves where anthocyanic epidermal layer was removed. Energy dissipation processes related to Photosystem II (PSII) and Photosystem I (PSI) activity was done using simultaneously Chlorophyll a (Chl a) fluorescence and P700 transmittance signals change. In anthocyanic epidermal-less leaves, PSII photochemical activity was more decreased in dependence to increasing light irradiance exposure. We found that photoinhibition of PSII decreased PSI activity by reducing the electron flow toward PSI, especially under high light intensities. Under those conditions, it resulted in the accumulation of oxidized PSI reaction centers, which was stronger in leaves where the anthocyanic epidermal layer was removed. In conclusion, our results showed that the anthocyanic epidermal layer had a photoprotective effect only on the PSII and not on the PSI of T. pallida leaves, supporting the role of anthocyanin pigments in the regulation of photosynthesis for excess absorbed light irradiance.  相似文献   

4.
Photosystem I (PSI) is a large pigment-protein complex and one of the two photosystems that drive electron transfer in oxygenic photosynthesis. We identified a nuclear gene required specifically for the accumulation of PSI in a forward genetic analysis of chloroplast biogenesis in maize. This gene, designated psa2, belongs to the “GreenCut” gene set, a group of genes found in green algae and plants but not in non-photosynthetic organisms. Disruption of the psa2 ortholog in Arabidopsis likewise resulted in the specific loss of PSI proteins. PSA2 harbors a conserved domain found in DnaJ chaperones where it has been shown to form a zinc finger and to have protein-disulfide isomerase activity. Accordingly, PSA2 exhibited protein-disulfide reductase activity in vitro. PSA2 localized to the thylakoid lumen and was found in a ∼250-kDa complex harboring the peripheral PSI protein PsaG but lacking several core PSI subunits. PSA2 mRNA is coexpressed with mRNAs encoding various proteins involved in the biogenesis of the photosynthetic apparatus with peak expression preceding that of genes encoding structural components. PSA2 protein abundance was not decreased in the absence of PSI but was reduced in the absence of the PSI assembly factor Ycf3. These findings suggest that a complex harboring PSA2 and PsaG mediates thiol transactions in the thylakoid lumen that are important for the assembly of PSI.  相似文献   

5.
Light regulation of photosystem I (PSI) biogenesis was studied in a unicellular green alga, Chlamydomonas reinhardtii. When Chlamydomonas cells were transferred from darkness to the light, mRNAs for both nuclear- and chloroplast-encoded PSI subunits were induced in concert. This light induction was inhibited by photosynthetic electron transport (PET) inhibitors, 3-(3,4 dichlorophenyl)-1,1-dimethylurea and 2,5-dibromo-3-methyl-6 isopropyl-p-benzoquinone, but not by an uncoupler, carbonyl cyanide m-chlorophenylhydrazone. This indicated that PET plays a pivotal role in the light induction of PSI subunit mRNAs, but that photophosphorylation is not necessary. When we irradiated the Chlamydomonas cells with PSI-light (695 nm) or PSII-light (644 nm), which makes the plastoquinone pool oxidative and reductive, respectively, PSII-light caused the accumulation of PSI proteins more abundantly than did PSI-light. However, there was no difference for the PSI subunit mRNA levels between these light sources. From these results, we conclude that PET plays dual roles in the regulation of PSI biogenesis in Chlamydomonas: when cells are illuminated, PET first induces the PSI subunit mRNAs irrespective of the redox state of the intersystem electron carriers, and then their redox state fine-tunes PSI biogenesis at translational and/or post-translational steps to fulfil the chromatic adaptation.  相似文献   

6.
Photosystem I (PSI) is a potential target of photoinhibition under fluctuating light. However, photosynthetic regulation under fluctuating light in field-grown plants is little known. Furthermore, it is unclear how young leaves protect PSI against fluctuating light under natural field conditions. In the present study, we examined chlorophyll fluorescence, P700 redox state and the electrochromic shift signal in the young and mature leaves of field-grown Cerasus cerasoides (Rosaceae). Within the first seconds after any increase in light intensity, young leaves showed higher proton gradient (ΔpH) across the thylakoid membranes than the mature leaves, preventing over-reduction of PSI in the young leaves. As a result, PSI was more tolerant to fluctuating light in the young leaves than in the mature leaves. Interestingly, after transition from low to high light, the activity of cyclic electron flow (CEF) in young leaves increased first to a high level and then decreased to a stable value, while this rapid stimulation of CEF was not observed in the mature leaves. Furthermore, the over-reduction of PSI significantly stimulated CEF in the young leaves but not in the mature leaves. Taken together, within the first seconds after any increase in illumination, the stimulation of CEF favors the rapid lumen acidification and optimizes the PSI redox state in the young leaves, protecting PSI against photoinhibition under fluctuating light in field-grown plants.  相似文献   

7.
Light is an elusive substrate for the function of photosynthetic light reactions of photosynthesis in the thylakoid membrane. Therefore structural and functional dynamics, which occur in the timescale from seconds to several days, are required both at low and high light conditions. The best characterized short-time regulation mechanism at low light is a rapid state transition, resulting in higher absorption cross section of PSI at the expense of PSII. If the low light conditions continue, activation of the lhcb-genes and synthesis of the light-harvesting proteins will occur to optimize the functions of PSII and PSI. At high light, the transition to state 2 is completely inhibited, but the feedback de-excitation of absorbed energy as heat, known as the energy-dependent quenching (q(E)), is rapidly set up. It requires, at least, the DeltapH-dependent activation of violaxanthin de-epoxidase and involvement of the PsbS protein. Another crucial mechanism for protection against the high light stress is the PSII repair cycle. Furthermore, the water-water cycle, cyclic electron transfer around PSI and chlororespiration are important means induced under high irradiation, functioning mainly to avoid an excess production of reactive oxygen species.  相似文献   

8.
9.
植物激素乙烯在多种生理生化过程中发挥重要作用,但其在特定组织器官中的合成机制尚不完全清楚。拟南芥中存在12个功能未知的ACC氧化酶类似蛋白(ACO-like homolog,ACOL),运用基因定点编辑技术构建了ACOL8的功能丧失型突变体,发现该基因的突变削弱了经典的乙烯“三重反应”。与野生型相比,突变体黄化幼苗下胚轴及主根的长度显著增加,这与突变体对外源ACC的敏感性下降现象一致。同时还发现ACOL8基因的表达受乙烯信号的正反馈调控,EIN3过表达增强其表达水平,而etr1-3的突变则产生相反效应。再者,在正常条件下,ACOL8基因的突变并未影响拟南芥的生长;但在盐胁迫条件下,突变体的根冠比显著下降,这说明该基因参与植物的盐胁迫响应。综上,这些结果说明ACOL8可能具有ACC氧化酶的功能,参与乙烯的合成与响应。  相似文献   

10.
Initially linked to photosynthesis, regulation by change in the redox state of thiol groups (S-S<-- -->2SH) is now known to occur throughout biology. Thus, in addition to serving important structural and catalytic functions, it is recognized that, in many cases, disulphide bonds can be broken and reformed for regulation. Several systems, each linking a hydrogen donor to an intermediary disulphide protein, act to effect changes that alter the activity of target proteins by change in the thiol redox state. Pertinent to the present discussion is the chloroplast ferredoxin/thioredoxin system, comprised of photoreduced ferredoxin, a thioredoxin, and the enzyme ferredoxin-thioredoxin reductase, that occur in the stroma. In this system, thioredoxin links the activity of enzymes to light: those enzymes functional in biosynthesis are reductively activated by light via thioredoxin (S-S-->2SH), whereas counterparts acting in degradation are deactivated under illumination conditions and are oxidatively activated in the dark (2SH-->S-S). Recent research has uncovered a new paradigm in which an immunophilin, FKBP13, and potentially other enzymes of the chloroplast thylakoid lumen are oxidatively activated in the light (2SH-->S-S). The present review provides a perspective on this recent work.  相似文献   

11.
Changes in the activity of cytochrome c oxidase (EC 1.9.3.1 [EC] ,Cyt-oxidase) in response to growth conditions were studied withthe cyanophyte Synechocystis PCC 6714 in relation to changesin PSI abundance induced by light regime for photosynthesis.The activity was determined with the Vmax of mammalian cytochromec oxidation by isolated membranes. The activity of glucose-6-phosphate(G-6-P):NADP+ oxidoreductase (EC 1.1.1.49 [EC] ) was also determinedsupplementarily. Cyt-oxidase activity was enhanced by glucoseadded to the medium even when cell growth maintained mainlyby oxygenic photosynthesis. G-6-P:NADP+ oxidoreductase was alsoactivated by glucose. The enhanced level of Cyt-oxidase washigher under PSII light, which causes high PSI abundance, thanthat under PSI light, which causes low PSI abundance. The levelwas intermediate under hetetrotrophic conditions. Although theactivity level was low in cells grown under autotrophic conditions,the level was again lower in cells grown under PSI light thanunder PSII light. The change of Cyt-oxidase activity in responseto light regime occurred in the same direction as that for thevariation of PSI abundance. Results suggest that in SynechocystisPCC 6714, the capacity of electron turnover at the two terminalcomponents of thylakoid electron transport system, Cyt-oxidaseand PSI, changes in parallel with each other in response tothe state of thylakoid electron transport system. 1Present address: Institute of Botany, Academia Sinica, Beijing100044, China 2Present address: Department of Botany, Utkal University, Bhubaneswar,India 751004  相似文献   

12.
PSI cyclic electron transport is essential for photosynthesis and photoprotection. In higher plants, the antimycin A-sensitive pathway is the main route of electrons in PSI cyclic electron transport. Although a small thylakoid protein, PGR5 (PROTON GRADIENT REGULATION 5), is essential for this pathway, its function is still unclear, and there are numerous debates on the rate of electron transport in vivo and its regulation. To assess how PGR5-dependent PSI cyclic electron transport is regulated in vivo, we characterized its activity in ruptured chloroplasts isolated from Arabidopsis thaliana. The activity of ferredoxin (Fd)-dependent plastoquinone (PQ) reduction in the dark is impaired in the pgr5 mutant. Alkalinization of the reaction medium enhanced the activity of Fd-dependent PQ reduction in the wild type. Even weak actinic light (AL) illumination also markedly activated PGR5-dependent PSI cyclic electron transport in ruptured chloroplasts. Even in the presence of linear electron transport [11 mumol O2 (mg Chl)(-1) h(-1)], PGR5-dependent PSI electron transport was detected as a difference in Chl fluorescence levels in ruptured chloroplasts. In the wild type, PGR5-dependent PSI cyclic electron transport competed with NADP+ photoreduction. These results suggest that the rate of PGR5-dependent PSI cyclic electron transport is high enough to balance the production ratio of ATP and NADPH during steady-state photosynthesis, consistently with the pgr5 mutant phenotype. Our results also suggest that the activity of PGR5-dependent PSI cyclic electron transport is regulated by the redox state of the NADPH pool.  相似文献   

13.
Biochemical studies have identified two proteins, RB47 and RB60, that are involved in the light-regulated translation of the psbA mRNA in the chloroplast of the unicellular alga Chlamydomonas reinhardtii. RB47, a member of the eukaryotic poly(A)-binding protein family, binds directly to the 5' untranslated region of the mRNA, whereas RB60, a protein disulfide isomerase (PDI), is thought to bind to RB47 and to modulate its activity via redox and phosphorylation events. Our present studies show that RB47 forms a single disulfide bridge that most probably involves Cys143 and Cys259. We found that RB60 reacts with high selectivity with the disulfide of RB47, suggesting that the redox states of these two redox partners are coupled. Kinetics analysis indicated that RB47 contains two fast reacting cysteines, of which at least one is sensitive to changes in pH conditions. The results support the notion that light controls the redox regulation of RB47 function via the coupling of RB47 and RB60 redox states, and suggest that light-induced changes in stromal pH might contribute to the regulation.  相似文献   

14.
Excessive light conditions repressed the levels of mRNAs accumulation of multiple Lhc genes encoding light-harvesting chlorophyll-a/b (LHC) proteins of photosystem (PS)II in the unicellular green alga, Chlamydomonas reinhardtii. The light intensity required for the repression tended to decrease with lowering temperature or CO(2) concentration. The responses of six LhcII genes encoding the major LHC (LHCII) proteins and two genes (Lhcb4 and Lhcb5) encoding the minor LHC proteins of PSII (CP29 and CP26) were similar. The results indicate that the expression of these Lhc genes is coordinately repressed when the energy input through the antenna systems exceeds the requirement for CO(2) assimilation. The Lhc mRNA level repressed under high-light conditions was partially recovered by adding the electron transport inhibitor 3-(3,4-dichlorophenyl)-1,1-dimethylurea, suggesting that redox signaling via photosynthetic electron carriers is involved in the gene regulation. However, the mRNA level was still considerably lower under high-light than under low-light conditions even in the presence of 3-(3,4-dichlorophenyl)-1,1-dimethylurea. Repression of the Lhc genes by high light was prominent even in the mutants deficient in the reaction center(s) of PSII or both PSI and PSII. The results indicate that two alternative processes are involved in the repression of Lhc genes under high-light conditions, one of which is independent of the photosynthetic reaction centers and electron transport events.  相似文献   

15.
正Light is crucial for plants, not only because of photosynthesis, but also because of photomorphogenesis. As one of the most important environmental cues, light influences multiple responses in plants,including seed germination, seedling de-etiolation,shade avoidance, phototropism, stomata and chloroplast movement, circadian rhythms, and flowering  相似文献   

16.
PGR5 has been reported as an important factor for the activity of the ferredoxin-dependent cyclic electron transport around PSI. To elucidate the role of PGR5 in C(3) photosynthesis, we characterized the photosynthetic electron transport rate (ETR), CO(2) assimilation and growth in the Arabidopsis thaliana pgr5 mutant at various irradiances and with CO(2) regimes. In low-light-grown pgr5, the CO(2) assimilation rate and ETR were similar to the those of the wild type at low irradiance, but decreased at saturating irradiance under photorespiratory conditions as well as non-photorespiratory conditions. Although non-photochemical quenching of chlorophyll fluorescence (NPQ) was not induced in the pgr5 mutant under steady-state photosynthesis, we show that it was induced under dark to light transition at low CO(2) concentration. Under low light conditions in air, pgr5 showed the same growth as the wild type, but a significant growth reduction compared with the wild type at >150 mumol photons m(-2) s(-1). This growth impairment was largely suppressed under high CO(2) concentrations. Based on the intercellular CO(2) concentration dependency of CO(2) assimilation, ETR and P700 oxidation measurements, we conclude that reduction of photosynthesis and growth result from (i) ATP deficiency and (ii) inactivation of PSI. We discuss these data in relation to the role of PGR5-dependent regulatory mechanisms in tuning the ATP/NADPH ratio and preventing inactivation of PSI, especially under conditions of high irradiance or enhanced photorespiration.  相似文献   

17.
Proton gradient regulation 5‐like photosynthetic phenotype 1 (PGRL1)‐dependent cyclic electron transport around photosystem I (PSI) plays important roles in the response to different stresses, including high light. Although the function of PGRL1 in higher plants and green algae has been thoroughly investigated, little information is available on the molecular mechanism of PGRL1 in diatoms. We created PGRL1 overexpression and knockdown transformants of Phaeodactylum tricornutum, the diatom model species, and investigated the impact on growth and photosynthesis under constant and fluctuating light conditions. PGRL1 over‐accumulation resulted in significant decreases in growth rate and apparent photosystem II (PSII) activity and led to an opposing change of apparent PSII activity when turning to high light, demonstrating a similar influence on photosynthesis as a PSII inhibitor. Our results suggested that PGRL1 overexpression can reduce the apparent efficiency of PSII and inhibit growth in P. tricornutum. These findings provide physiological evidence that the accumulation of PGRL1 mainly functions around PSII instead of PSI.  相似文献   

18.
Disulfides are conventionally viewed as structurally stabilizing elements in proteins but emerging evidence suggests two disulfide subproteomes exist. One group mediates the well known role of structural stabilization. A second redox‐active group are best known for their catalytic functions but are increasingly being recognized for their roles in regulation of protein function. Redox‐active disulfides are, by their very nature, more susceptible to reduction than structural disulfides; and conversely, the Cys pairs that form them are more susceptible to oxidation. In this study, we searched for potentially redox‐active Cys Pairs by scanning the Protein Data Bank for structures of proteins in alternate redox states. The PDB contains over 1134 unique redox pairs of proteins, many of which exhibit conformational differences between alternate redox states. Several classes of structural changes were observed, proteins that exhibit: disulfide oxidation following expulsion of metals such as zinc; major reorganisation of the polypeptide backbone in association with disulfide redox‐activity; order/disorder transitions; and changes in quaternary structure. Based on evidence gathered supporting disulfide redox activity, we propose disulfides present in alternate redox states are likely to have physiologically relevant redox activity.  相似文献   

19.
20.
PSI cyclic electron transport contributes markedly to photosynthesis and photoprotection in flowering plants. Although the thylakoid protein PGR5 (Proton Gradient Regulation 5) has been shown to be essential for the main route of PSI cyclic electron transport, its exact function remains unclear. In transgenic Arabidopsis plants overaccumulating PGR5 in the thylakoid membrane, chloroplast development was delayed, especially in the cotyledons. Although photosynthetic electron transport was not affected during steady-state photosynthesis, a high level of non-photochemical quenching (NPQ) was transiently induced after a shift of light conditions. This phenotype was explained by elevated activity of PSI cyclic electron transport, which was monitored in an in vitro system using ruptured chloroplasts, and also in leaves. The effect of overaccumulation of PGR5 was specific to the antimycin A-sensitive pathway of PSI cyclic electron transport but not to the NAD(P)H dehydrogenase (NDH) pathway. We propose that a balanced PGR5 level is required for efficient regulation of the rate of antimycin A-sensitive PSI cyclic electron transport, although the rate of PSI cyclic electron transport is probably also regulated by other factors during steady-state photosynthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号