首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
5.
Towards the molecular basis of heterosis   总被引:7,自引:0,他引:7  
  相似文献   

6.
The phenomenon of heterosis or hybrid vigor has long been recognized to have a genetic basis. Heterosis expressed in hybrids often has been correlated with the heterozygosity inherent to a hybrid produced from the cross of parents of different genetic backgrounds. Our understanding of the molecular mechanisms that elicit heterosis remains incomplete; however, a number of critical experiments have contributed to our understanding of the physiological processes and biochemical mechanisms operative in the expression of heterosis. These experiments and the genetic mechanisms thought to underlie them are considered here. Based upon these findings, heterosis does not appear to have a single cause, but rather may result by reason of the action of either single or multiple genes’ in the nucleus or the cytoplasm or both. Pertinent examples of gene action which potentiates heterotic effects are discussed.  相似文献   

7.
In search of the molecular basis of heterosis   总被引:28,自引:0,他引:28       下载免费PDF全文
Birchler JA  Auger DL  Riddle NC 《The Plant cell》2003,15(10):2236-2240
  相似文献   

8.
Subunit interaction: A molecular basis of heterosis   总被引:2,自引:0,他引:2  
Acid phosphatase, a dimeric enzyme, in Drosophila malerkotliana was studied in isogenic flies to explore the molecular basis of heterosis. As the enzyme activity in heterozygotes is 34% more than that in the better parent (S/S), heterosis is indicated. Vmax, Km, and Ki values are 14.60, 3.6 X 10(-4) M, and 0.45 X 10(-4) M, respectively, for the enzyme from F/S flies and 11.80, 4.0 X 10(-4) M, and 0.37 X 10(-4) M, respectively, for the enzyme from S/S flies. Thus heterosis for enzyme activity results from a better enzyme in F/S flies. The higher efficiency and better quality of the enzyme in F/S flies were traced to the heterodimeric allozyme, present only in heterozygotes. Enzyme activity, Vmax, Km, and Ki values are 0.739, 42.1; 3.6 X 10(-4) M, and 0.50 X 10(-4) M, respectively, for the heterodimeric and 0.513, 36.8; 4.1 X 10(-4) M, and 0.37 X 10(-4) M, respectively, for the better parental homodimeric allozyme. On an equimolar basis the enzyme activity of the heterodimer is 44% higher than that of the better homodimer. The better performance of the heterodimer is probably a reflection of superior conformation resulting from interaction between component subunits (F and S polypeptides).  相似文献   

9.
Exploring the molecular basis of heterosis for plant breeding   总被引:1,自引:0,他引:1  
Since approximate a century ago, many hybrid crops have been continually developed by crossing two inbred varieties. Owing to heterosis(hybrid vigor) in plants, these hybrids often have superior agricultural performances in yield or disease resistance succeeding their inbred parental lines. Several classical hypotheses have been proposed to explain the genetic causes of heterosis. During recent years, many new genetics and genomics strategies have been developed and used for the identifications of heterotic genes in plants. Heterotic effects of the heterotic loci and molecular functions of the heterotic genes are being investigated in many plants such as rice, maize, sorghum, Arabidopsis and tomato.More and more data and knowledge coming from the molecular studies of heterotic loci and genes will serve as a valuable resource for hybrid breeding by molecular design in future. This review aims to address recent advances in our understanding of the genetic and molecular mechanisms of heterosis in plants. The remaining scientific questions on the molecular basis of heterosis and the potential applications in breeding are also proposed and discussed.  相似文献   

10.
In populations derived from commercial hybrid rice combination Shanyou 10, F1 heterosis and F2 inbreeding depression were observed on grain yield (GYD) and number of panicles (NP). Using marker loci evenly distributed on the linkage map as fixing factors, the F2 population was divided into sub-populations. In a large number of sub-populations, significant correlations were observed between heterozygosity and GYD, and between heterozygosity and NP. This was especially true in type III sub-populations in which the genotype of a fixing factor was heterozygotes. In type III sub-populations, 15 QTL for GYD and 13 QTL for NP were detected, of which the majority exhibited over-dominance effects for increasing the trait values. This study showed that over-dominance played an important role in the genetic control of heterosis in rice.  相似文献   

11.
Importance of over-dominance as the genetic basis of heterosis in rice   总被引:3,自引:0,他引:3  
In populations derived from commercial hybrid rice combination Shanyou 10, F1 hetero-sis and F2 inbreeding depression were observed on grain yield (GYD) and number of panicles (NP). Using marker loci evenly distributed on the linkage map as fixing factors, the F2 population was divided into sub-populations. In a large number of sub-populations, significant correlations were observed between heterozygosity and GYD, and between heterozygosity and NP. This was especially true in type III sub-populations in which the genotype of a fixing factor was heterozy-gotes. In type III sub-populations, 15 QTL for GYD and 13 QTL for NP were detected, of which the majority exhibited over-dominance effects for increasing the trait values. This study showed that over-dominance played an important role in the genetic control of heterosis in rice.  相似文献   

12.
Epistasis plays an important role as genetic basis of heterosis in rice   总被引:6,自引:0,他引:6  
Thegeneticbasisofheterosisisstilladebatingissue.Twohypotheses,thedominancehypothesisandtheoverdominancehypothesis,bothproposedin1908[1—3],havecompetedformostpartofthiscentury.Althoughmanyresearcherspreferonehypothesistotheother,experimentaldataallowingforcr…  相似文献   

13.
Garcia AA  Wang S  Melchinger AE  Zeng ZB 《Genetics》2008,180(3):1707-1724
Despite its importance to agriculture, the genetic basis of heterosis is still not well understood. The main competing hypotheses include dominance, overdominance, and epistasis. NC design III is an experimental design that has been used for estimating the average degree of dominance of quantitative trait loci (QTL) and also for studying heterosis. In this study, we first develop a multiple-interval mapping (MIM) model for design III that provides a platform to estimate the number, genomic positions, augmented additive and dominance effects, and epistatic interactions of QTL. The model can be used for parents with any generation of selfing. We apply the method to two data sets, one for maize and one for rice. Our results show that heterosis in maize is mainly due to dominant gene action, although overdominance of individual QTL could not completely be ruled out due to the mapping resolution and limitations of NC design III. For rice, the estimated QTL dominant effects could not explain the observed heterosis. There is evidence that additive × additive epistatic effects of QTL could be the main cause for the heterosis in rice. The difference in the genetic basis of heterosis seems to be related to open or self pollination of the two species. The MIM model for NC design III is implemented in Windows QTL Cartographer, a freely distributed software.  相似文献   

14.
Meta-analysis作为一种整合多特征、多数据的统计方法,上世纪90年代被引入生命科学领域。随着高通量测序技术的快速发展,以基因组学、转录组学和蛋白质组学为核心的生命组学逐渐成为生命科学研究的新热点。海量数据的快速产出推动了组学研究的发展,也引发了数据规模过大、难以系统整合等问题。针对上述情况,meta-analysis被广泛地应用于分析各组学数据,方法也不断得到改进。本文系统总结了有代表性的meta-analysis方法,考察了目前meta-analysis在多个组学领域的应用现状,最后讨论了meta-analysis尚待解决的问题并展望未来的发展方向。  相似文献   

15.
We investigated the isozyme profiles of antioxidant enzymes in cultivars and lines with different seed productivity in cool climate conditions as a step towards understanding the physiological and genetical mechanisms underlying chilling tolerance in soybean. While no difference in superoxide dismutase, or catalase isozyme profiles was observed among the cultivars and lines tested, we found polymorphism in the ascorbate peroxidase isozyme profile; there were two types, with or without a cytosolic isoform (APX1). The cultivars and lines lacking APX1 proved more tolerant to chilling temperatures, as evaluated by yielding ability. The genotype-dependent deficiency of APX1 was consistent in plants and tissues under various oxidative stress conditions including the exposure to low-temperatures. In addition, the genetic analysis of progeny derived from crossing between cultivars differing in the isozyme profile indicated that the APX1 deficiency is controlled by a single recessive gene (apx1), and is inherited independently of the genes that have previously been identified for their association with chilling tolerance. Molecular and linkage analyses suggested that the variant gene of the APX1-absent genotype coding for a cytosolic APX, which contained a single nucleotide substitution and a single nucleotide deletion in the coding region, is responsible for the genotype-dependent deficiency of APX1. The association of APX1 deficiency with chilling tolerance is discussed in detail.  相似文献   

16.
杂种优势是指异源杂交代的性能优越于同源亲本。最近各种研究表明杂种优势是各种机制相互作用的综合结果。有显性机制、超显性机制、上位性作用、基因互补、DNA甲基化、基因网络系统、生物钟等与杂种优势的相互关系方面研究,就目前这些方面研究进展进行概述。  相似文献   

17.
《Cell reports》2023,42(2):112121
  1. Download : Download high-res image (170KB)
  2. Download : Download full-size image
  相似文献   

18.
19.
Isolation allows populations to diverge and to fix different alleles. Deleterious alleles that reach locally high frequencies contribute to genetic load, especially in inbred or selfing populations, in which selection is relaxed. In the event of secondary contact, the recessive portion of the genetic load is masked in the hybrid offspring, producing heterosis. This advantage, only attainable through outcrossing, should favour evolution of greater outcrossing even if inbreeding depression has been purged from the contributing populations. Why, then, are selfing‐to‐outcrossing transitions not more common? To evaluate the evolutionary response of mating system to heterosis, we model two monomorphic populations of entirely selfing individuals, introduce a modifier allele that increases the rate of outcrossing and investigate whether the heterosis among populations is sufficient for the modifier to invade and fix. We find that the outcrossing mutation invades for many parameter choices, but it rarely fixes unless populations harbour extremely large unique fixed genetic loads. Reversions to outcrossing become more likely as the load becomes more polygenic, or when the modifier appears on a rare background, such as by dispersal of an outcrossing genotype into a selfing population. More often, the outcrossing mutation instead rises to moderate frequency, which allows recombination in hybrids to produce superior haplotypes that can spread without the mutation's further assistance. The transience of heterosis can therefore explain why secondary contact does not commonly yield selfing‐to‐outcrossing transitions.  相似文献   

20.
Potato synthesises high levels of proteinase inhibitors in response to insect attack. This can adversely affect protein digestion in the insects, leading to reduced growth, delayed development and lowered fecundity. Colorado potato beetle overcomes this defence mechanism by changing the composition of its digestive proteinases. The induced cysteine proteinases in the adapted gut sustain a normal rate of protein hydrolysis either by inactivating the inhibitors by cleavage or by insensitivity to the inhibitors as a result of high Kis. In this study cDNA clones of cysteine proteinases in adapted guts were isolated by nested PCR on the basis of N-terminal sequences previously determined for purified enzymes (Gruden et al., 2003). The cysteine proteinase cDNAs can be classified into three groups: intestains A, B and C. The amino acid identity is more than 91% within and 35-62% between the groups. They share 43-50% identity to mammalian cathepsins S, L, K, H, J and cathepsin-like enzymes from different arthropods. Homology modelling predicts that intestains A, B and C follow the general fold of papain-like proteinases. Intestains from each group, however, differ in some specific structural characteristics in the S1 and S2 binding sites that could influence enzyme-inhibitor interaction and thus, provide different mechanisms of resistance to inhibitors for the different enzymes. Gene expression analysis revealed that the intestains A and C, but not B, are induced twofold by potato plants with high levels of proteinase inhibitors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号