首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We studied the effects of virus infection on dynamics of three Eupatorium makinoi populations in contrasting light environments, Gora-dani (a shaded population) and Minou 1 and Minou 2 (open-site populations). Censuses of the plants were taken for 8 yr in Gora-dani and 4 yr in Minou 1 and Minou 2. After the epidemics of virus infection, most plants were virus infected at both sites. The number of plants and the proportion of flowering individuals decreased rapidly and simultaneously in the shaded population in Gora-dani. By contrast, in the open-site populations of Minou, the proportion of flowering plants decreased first, and then the number of plants decreased gradually. Growth analysis of the plants in the Gora-dani population revealed that stem growth was significantly suppressed by infection and that flowering and survivorship of the infected plants decreased with reducing plant height. Since light availability affected plant growth and thereby flowering and survivorship, the differences in population dynamics between the two field sites could be caused by the differences in light environments. Although populations in open sites may persist for considerable periods after virus epidemics, the individual local populations of E. makinoi would eventually become extinct irrespective of light environments.  相似文献   

2.
We examined the effects of geminivirus infection on fitness components and on photosynthetic properties of the host plant, Eupatorium makinoi, grown at two irradiance levels in a natural-light greenhouse. Under the low-light condition (13% full sunlight), more than a half of the infected plants died during the 9-mo experiment, while most of uninfected plants survived. Growth rate was also lowered by infection. At high light (50% full sunlight), by contrast, virus infection did not cause mortality despite slight decrease in growth rate. Flowering occurred only at high light, and reproductive outputs of the plants were markedly reduced by the infection. Infected leaves had distinct yellow variegations and, when compared with uninfected leaves, they showed (1) comparable light-saturated photosynthetic rate per unit area, but (2) lower initial slope of light-response curve of photosynthesis on an incident irradiance basis. The lower initial slope was mainly due to reduction of light-harvesting chlorophyll-protein complexes in the variegated parts. Since the differences in plant performance, depending both on infection and on growth irradiance, were largely explained by the differences in growth rate and/or plant size, the reduced photosynthetic production in the infected plants would be a major factor explaining the inferior performance of the host plants.  相似文献   

3.
Eupatorium makinoi plants with or without geminivirus infection were grown in shading frames with 70, 15 and 5.5% sunlight. Growth characteristics of these plants in the early vegetative phase were compared by means of growth analysis. We also measured leaf photosynthetic gas exchange rates and examined relationships between leaf photosynthesis and whole-plant growth. Relative growth rate (RGR=(1/W)×(dW/dt), where W is plant dry mass) of virus-infected plants was lower than that of uninfected plants under all three light conditions. The reduction of RGR by infection was increased with irradiance. The net assimilation rate (NAR=(1/A)×(dW/dt), where A is total leaf area of the plant) was also reduced both by infection and shading. NARs that were estimated from light-response curves of leaf photosynthesis, in situ measurements of irradiance, and respiration rates of leaves, stems and below-ground parts, agreed very well with the values obtained by conventional growth analysis techniques. Decreases in the estimated NAR value from infection and shading were mostly explained by the decreases in leaf photosynthesis. These results clearly showed that lowered RGR in virus-infected plants was attributed mainly to impaired photosynthesis in virus-infected leaves.  相似文献   

4.
Plant pathogens and insect herbivores are prone to share hosts under natural conditions. Consequently, pathogen-induced changes in the host plant can affect herbivory, and vice versa. Even though plant viruses are ubiquitous in the field, little is known about plant-mediated interactions between viruses and non-vectoring herbivores. We investigated the effects of virus infection on subsequent infestation by a non-vectoring herbivore in a natural genotype of Trifolium repens (white clover). We tested whether infection with White clover mosaic virus (WClMV) alters (1) the effects of fungus gnat feeding on plant growth, (2) the attractiveness of white clover for adult fungus gnat females, and (3) the volatile emission of white clover plants. We observed only marginal effects of WClMV infection on the interaction between fungus gnat larvae and white clover. However, adult fungus gnat females clearly preferred non-infected over WClMV-infected plants. Non-infected and virus-infected plants could easily be discriminated based on their volatile blends, suggesting that the preference of fungus gnats for non-infected plants may be mediated by virus-induced changes in volatile emissions. The compound β-caryophyllene was exclusively detected in the headspace of virus-infected plants and may hence be particularly important for the preference of fungus gnat females. Our results demonstrate that WClMV infection can decrease the attractiveness of white clover plants for fungus gnat females. This suggests that virus infections may contribute to protecting their hosts by decreasing herbivore infestation rates. Consequently, it is conceivable that viruses play a more beneficial role in plant-herbivore interactions than generally thought.  相似文献   

5.
The effect of viral infection on photosynthesis was investigated in Nicotiana benthamiana Gray plants infected with different strains of pepper and paprika mild mottle viruses (PMMoV and PaMMoV) and chimeric viral genomes derived from them. In both symptomatic and asymptomatic leaves of virus-infected plants, photosynthetic electron transport in photosystem II (PSII) was reduced. In all cases analyzed, viral infection affected the polypeptide pattern of the oxygen-evolving complex (OEC) in thylakoid membranes. The levels of both the 24 and 16 kDa proteins were reduced to a differing extent when compared with the levels in healthy control. This loss of the OEC extrinsic proteins affected the oxygen evolution rates of thylakoid membranes and leaves from infected plants. Additionally, viral coat protein (CP) was found associated with the chloroplasts and the thylakoid membranes of the infected plants. The CP accumulation level was dependent upon both the post-infection time and the virus analyzed, but independent of the CP itself since hybrid viruses did not behave as their parental viruses with the same CP, with respect to PSII inhibition, CP accumulation rates and OEC protein levels. Modulated chlorophyll (Chl) fluorescence and oxygen evolution measurements carried out in both types of leaves showed that the quantum yield of PSII electron transport was diminished in infected plants with respect to those of control plants. The decrease in electron transport efficiency was mainly caused by a reduction in the fraction of open reaction centers. The infected plants also showed a reduction in the efficiency of excitation capture in PSII by photoprotective thermal dissipation of excess excitation energy.  相似文献   

6.
The movement of pollen grains from anthers to stigmas, often by insect pollinator vectors, is essential for plant reproduction. However, pollen is also a unique vehicle for viral spread. Pollen-associated plant viruses reside on the outside or inside of pollen grains, infect susceptible individuals through vertical or horizontal infection pathways, and can decrease plant fitness. These viruses are transferred with pollen between plants by pollinator vectors as they forage for floral resources; thus, pollen-associated viral spread is mediated by floral and pollen grain phenotypes and pollinator traits, much like pollination. Most of what is currently known about pollen-associated viruses was discovered through infection and transmission experiments in controlled settings, usually involving one virus and one plant species of agricultural or horticultural interest. In this review, we first provide an updated, comprehensive list of the recognized pollen-associated viruses. Then, we summarize virus, plant, pollinator vector, and landscape traits that can affect pollen-associated virus transmission, infection, and distribution. Next, we highlight the consequences of plant–pollinator–virus interactions that emerge in complex communities of co-flowering plants and pollinator vectors, such as pollen-associated virus spread between plant species and viral jumps from plant to pollinator hosts. We conclude by emphasizing the need for collaborative research that bridges pollen biology, virology, and pollination biology.  相似文献   

7.
 在甘肃民勤沙生植物园内利用植物蒸腾耗水量观测场,研究了两种优势旱生植物沙木蓼(Atraphaxis frutescens)和沙枣(Elaeagnus angustifolia)叶片中的叶绿素、可溶性糖、淀粉和N、P、K含量等对不同地下水深度(1~3.4 m)的响应。结果表明:1) 1.4 m、2.4 m和3.4 m 3种不同的地下水深度处理,产生了3种差异显著的土壤水分梯度;2) 地下水深度的变化导致了这两种旱生植物叶绿素a、叶绿素b、叶绿素总量、叶绿素a与叶绿素b的比值等的显著变化(p<0.01);3) 地下水深度的增加引起了两种植物叶片可溶性糖含量的升高和淀粉含量的降低;4) 地下水深度的增加引起了两种植物叶片中N、P、K含量的降低;5) 不同的地下水深度引起沙枣和沙木蓼叶绿素a、叶绿素b、叶绿素总量、叶绿素a与叶绿素b的比值、N、P、K含量、可溶性糖和淀粉增加或减少的程度不同。沙枣是非豆科固氮植物,两者的差异是否与固氮作用相关还有待于进一步研究。  相似文献   

8.
Yang C  Kosemund K  Cornet C  Paulsen H 《Biochemistry》1999,38(49):16205-16213
Four amino acids in the major light-harvesting chlorophyll (Chl) a/b complex (LHCII) that are thought to coordinate Chl molecules have been exchanged with amino acids that presumably cannot bind Chl. Amino acids H68, Q131, Q197, and H212 are positioned in helixes B, C, A, and D, respectively, and, according to the LHCII crystal structure [Kühlbrandt, W., et al. (1994) Nature 367, 614-621], coordinate the Chl molecules named a(5), b(6), a(3), and b(3). Moreover, a double mutant was analyzed carrying exchanges at positions E65 and H68, presumably affecting Chls a(4) and a(5). All mutant proteins could be reconstituted in vitro with pigments, although the thermal stability of the resulting mutant versions of recombinant LHCII varied significantly. All complexes reconstituted with the mutant proteins contained fewer chlorophyll molecules per two lutein molecules than complexes reconstituted with the wild-type protein. However, the chlorophyll-binding amino acids could not be unambiguously assigned to binding either chlorophyll a or b, as in most cases more than one chlorophyll molecule was lost due to the mutation. The changes in Chl stoichiometries suggest that in LHCII some chlorophyll positions can be filled with either Chl a or b. Only some of the point mutations in LHCII affected the ability of the apoprotein to assemble into trimeric LHCII upon insertion into isolated thylakoid membranes. Among these were exchanges of H68 with either F or L, suggesting that the stability of the LHCII trimer significantly depends on this amino acid or the Chl molecule named a(5) that is attached to it and is located close to the center of the trimeric complex. The ion pair bridge between E65 and R185 in LHCII does not appear to be essential for the proper folding of the protein.  相似文献   

9.
在甘肃民勤沙生植物园内利用植物蒸腾耗水量观测场,研究了两种优势旱生植物沙木蓼(Atraphaxis frutescens)和沙棘(Elaeagnus angustifolia)叶片中的叶绿素、可溶性糖,淀粉和N、P、K、含量等对不同地下水深度(1-3.4m)的响应。结果表明:1)1.4m,2.4m和3.4m 3种不同地的地下水深度处理,产生了3种差异显著的土壤水分梯度;2)地下水深度的变化导致了这两种旱生植物叶绿素a、叶绿素b、叶绿素总量、叶绿素a与叶绿素b的比值等的显著变化(P<0.01);3)地下水深度的增加引起了两种植物叶片可溶性糖含量的升高和淀粉含量的降低;4)地下水深度的增加引起了两种植物叶片中N、P、K含量的降低;5)不同的地下水深度引起沙棘和沙木蓼叶绿素a、叶绿素b、叶绿素总量、叶绿素a与叶绿素b的比值、N、P、K含量,可溶性糖和淀粉增加或减少的程度不同。沙棘是非豆科固氮植物,两者的差异是否与固氮作用相关还有待于进一步研究。  相似文献   

10.
植物病毒可通过影响植物形态和生理特性从而对媒介昆虫和寄生性天敌产生作用。然而, 在植物 媒介昆虫 寄生蜂三营养级关系研究中有关植物病毒的影响很少被考虑。本研究测定和分析了番茄植株感染番茄黄化曲叶病毒(tomato yellow leaf curl virus, TYLCV)后叶毛密度的变化及对烟粉虱Bemisia tabaci (Gennadius)重要寄生性天敌海氏桨角蚜小蜂Eretmocerus hayati Zolnerowich and Rose行为与适合性的影响。结果表明: 携带TYLCV病毒番茄植株叶毛密度显著增加, 为健康植株叶毛密度的1.8倍。海氏桨角蚜小蜂在带毒植株叶片上的寄主处置时间和寄主块停留时间显著长于其在健康植株叶片上的时间, 分别为其2倍和1.5倍, 但寄生蜂的寄生率、 羽化率及发育历期差异不显著(P>0.05)。本文首次报道了双生病毒侵染可引起叶毛密度的增加, 对理解植物-双生病毒-烟粉虱-寄生蜂四方关系提供了新的数据。  相似文献   

11.

Background and Aims

Genotype by environment (G × E) interactions are important for the long-term persistence of plant species in heterogeneous environments. It has often been suggested that disease is a key factor for the maintenance of genotypic diversity in plant populations. However, empirical evidence for this contention is scarce. Here virus infection is proposed as a possible candidate for maintaining genotypic diversity in their host plants.

Methods

The effects of White clover mosaic virus (WClMV) on the performance and development of different Trifolium repens genotypes were analysed and the G × E interactions were examined with respect to genotype-specific plant responses to WClMV infection. Thus, the environment is defined as the presence or absence of the virus.

Key Results

WClMV had a negative effect on plant performance as shown by a decrease in biomass and number of ramets. These effects of virus infection differ greatly among host genotypes, representing a strong G × E interaction. Moreover, the relative fitness and associated ranking of genotypes changed significantly between control and virus treatments. This shift in relative fitness among genotypes suggests the potential for WClMV to provoke differential selection on T. repens genotypes, which may lead to negative frequency-dependent selection in host populations.

Conclusions

The apparent G × E interaction and evident repercussions for relative fitness reported in this study stress the importance of viruses for ecological and evolutionary processes and suggest an important role for viruses in shaping population dynamics and micro-evolutionary processes.  相似文献   

12.
Chemical suppression of the symptoms of two virus diseases   总被引:3,自引:0,他引:3  
Carbendazim applied at the rate of 2 g per plant to the roots of tobacco (Nicotiana tabacum cv. White Burley) plants before infection with tobacco mosaic virus (TMV) caused very considerable reduction in the severity of disease symptoms in systemically infected leaves but did not affect their virus content. Leaves of untreated, infected plants had a greatly reduced chlorophyll content 100 days after infection whereas the chlorophyll content of leaves of infected plants treated with carbendazim was similar to that of normal uninfected leaves. Carbendazim had no effect on the infectivity of TMV in vitro or on the local lesion reaction of N. glutinosa plants when inoculated with TMV. Carbendazim was applied to lettuce cv. Cobham Green at a total rate of o-i g per plant before and after they were infected with beet western yellows virus and the plants were then grown on in the field. At harvest time (50 days after infection) almost all the treated virus-infected plants were of a normal green appearance, whereas the untreated controls were almost all very severely yellowed and unmarketable.  相似文献   

13.
Viruses are obligate intracellular symbionts. Plant viruses are often discovered and studied as pathogenic parasites that cause diseases in agricultural plants. However, here it is shown that viruses can extend survival of their hosts under conditions of abiotic stress that could benefit hosts if they subsequently recover and reproduce. Various plant species were inoculated with four different RNA viruses, Brome mosaic virus (BMV), Cucumber mosaic virus (CMV), Tobacco mosaic virus and Tobacco rattle virus. The inoculated plants were stressed by withholding water. The onset of drought symptoms in virus-infected plants was compared with that in the plants that were inoculated with buffer (mock-inoculated plants). Metabolite profiling analysis was conducted and compared between mock-inoculated and virus-infected plants before and after being subjected to drought stress. In all cases, virus infection delayed the appearance of drought symptoms. Beet plants infected with CMV also exhibited significantly improved tolerance to freezing. Metabolite profiling analysis showed an increase in several osmoprotectants and antioxidants in BMV-infected rice and CMV-infected beet plants before and after drought stress. These results indicate that virus infection improves plant tolerance to abiotic stress, which correlates with increased osmoprotectant and antioxidant levels in infected plants.  相似文献   

14.
Although there is long-standing recognition that pest complexes require different management approaches than individual pests, relatively little research has explored how pests interact. In particular, little is known of how herbivorous insects and plant pathogens interact when sharing the same host plant. The soybean aphid, Aphis glycines Mastumura, a recently introduced pest of soybean in the upper midwestern United States, and a complex of plant viruses vectored to soybean by insects have become a major concern for growers in the region. Given the abundance of soybean aphid and the increase in virus incidence in recent years, soybean aphids often use soybean infected by plant viral pathogens. We tested the hypothesis that soybean aphid performance is affected by virus infection of soybean plants. We conducted a series of field and laboratory experiments that examined how infection of soybeans with the common plant viruses, alfalfa mosaic, soybean mosaic, and bean pod mottle viruses, influenced soybean aphid performance. Soybean plants (in the field and laboratory) were hand inoculated with individual viruses, and aphids were allowed to colonize plants naturally in field experiments or added to the plants in clip-cages or within mesh bags in laboratory assays. In the field, aphid density on uninfected control soybean plants was nearly double that on infected plants. In laboratory assays, aphid population growth rates were on average 20% lower for aphids on virus infected compared with uninfected plants. Life table analyses showed that increased mortality on virus-infected plants likely explain differences in aphid population growth. Although there was some heterogeneity in the significance of treatment effects among different experiments, when independent experiments are taken together, there is on average an overall negative effect of these viruses on soybean aphids.  相似文献   

15.
properties, pigment compositions, Chl a/b ratios and apparent molecular weights of chlorophyll-protein complexes were compared between spinach and a marine green alga, Bryopsis corticulans. The results are as follows: 1. Ten chlorophyll-protein complexes were resolved from spinach thylakoid membranes solubilized by SDS in a final SDS/Chl weight ratio of 10:1, and subjected to SDS-PAGE with 11% resolution gel. CPIa 1–3 and CPI belonged to photosystem Ⅰ, and the rest to phorosystem Ⅱ. The maximum absorption of CPIa2, CPIas and CPI were all at 674nm, but that of CPIa1 at 670nm, and those of LHCII and D2 at 670 and 673nm, respectively. Chlorophyll ia PSⅡ was 63% of the total. In PSⅡ, most of chlorophyll was in LHCII which contained 86% of the chlorophyll in PSⅡ. In PSⅠ, chlorophyll in CPla was 72% of the total. Chlorophyll a was the main pigment in PSⅠ components which have Chl a/b ratio over 15. 2. Eight chlorophyll-protein complexes were isolated from B. corticulans with a SDS/Chi weight ratio of 8:1 and 8% resolution gel. The maximum absorption of CPIa, CPI, LHCII and D2 were respectively at 671nm, 673nm, 669nm and 664nm. PSⅡ contained 77% of the total chlorophyll. LHCII chlorophyll was 95% of the PSⅡ chlorophyll. CPI held 77% of PSⅠ chloro~ phyll. There was more chlorophyll b in Bryopsis complexes, especially in LHCI1 (Chl a/b< 0.8). The molecular weights of Bryopsis complexes were higher than those of the spinach complexes. Bryopsis LHCII contained siphoxanthin and siphothin, the marked pigments of Siphohales, as functional pigments. The above results revealed three points of difference between these two plants. Firstly, Chl a is the main pigment in spinach, whereas in Bryopsis the main pigments are Chl b and siphoxanthin. This is in accordance with the suggestion that plants may change their pigment composition to adapt light regime in the environment during evolution. Secondly, in Bryopsis, chlorophyll is concentrated in photosystem Ⅱ, but in spinach chlorophyll is shared evenly by two photosystems. Finally, CPI in Bryopsis contained the major part of chlorophyll in PSⅠ, yet in spinach CPIa is the superior.  相似文献   

16.
《BBA》2020,1861(7):148191
Light-harvesting complex II (LHCII) from the marine green macroalga Bryopsis corticulans is spectroscopically characterized to understand the structural and functional changes resulting from adaptation to intertidal environment. LHCII is homologous to its counterpart in land plants but has a different carotenoid and chlorophyll (Chl) composition. This is reflected in the steady-state absorption, fluorescence, linear dichroism, circular dichroism and anisotropic circular dichroism spectra. Time-resolved fluorescence and two-dimensional electronic spectroscopy were used to investigate the consequences of this adaptive change in the pigment composition on the excited-state dynamics. The complex contains additional Chl b spectral forms – absorbing at around 650 nm and 658 nm – and lacks the red-most Chl a forms compared with higher-plant LHCII. Similar to plant LHCII, energy transfer between Chls occurs on timescales from under hundred fs (mainly from Chl b to Chl a) to several picoseconds (mainly between Chl a pools). However, the presence of long-lived, weakly coupled Chl b and Chl a states leads to slower exciton equilibration in LHCII from B. corticulans. The finding demonstrates a trade-off between the enhanced absorption of blue-green light and the excitation migration time. However, the adaptive change does not result in a significant drop in the overall photochemical efficiency of Photosystem II. These results show that LHCII is a robust adaptable system whose spectral properties can be tuned to the environment for optimal light harvesting.  相似文献   

17.
Double infections of related or unrelated viruses frequently occur in single plants, the viral agents being inoculated into the host plant simultaneously (co‐infection) or sequentially (super‐infection). Plants attacked by viruses activate sophisticated defence pathways which operate at different levels, often at significant fitness costs, resulting in yield reduction in crop plants. The occurrence and severity of the negative effects depend on the type of within‐host interaction between the infecting viruses. Unrelated viruses generally interact with each other in a synergistic manner, whereas interactions between related viruses are mostly antagonistic. These can incur substantial fitness costs to one or both of the competitors. A relatively well‐known antagonistic interaction is cross‐protection, also referred to as super‐infection exclusion. This type of interaction occurs when a previous infection with one virus prevents or interferes with subsequent infection by a homologous second virus. The current knowledge on why and how one virus variant excludes or restricts another is scant. Super‐infection exclusion between viruses has predominantly been attributed to the induction of RNA silencing, which is a major antiviral defence mechanism in plants. There are, however, presumptions that various mechanisms are involved in this phenomenon. This review outlines the current state of knowledge concerning the molecular mechanisms behind antagonistic interactions between plant viruses. Harmful or beneficial effects of these interactions on viral and host plant fitness are also characterized. Moreover, the review briefly outlines the past and present attempts to utilize antagonistic interactions among viruses to protect crop plants against destructive diseases.  相似文献   

18.
There are few studies of the interaction between wild plants and viruses. In this paper, the incidence of a geminivirus (tobacco leaf curl virus, TLCV) infection, and its effects on mortality, growth and reproduction of its host-plant, Eupatorium chinense, are reported. A total of 221 plants of an agamospermous population of E. chinense were chosen and their demographic behaviour followed over 2 years (1991–1992). The proportion of infected plants differed between years, with fewer plants infected in 1991 than in 1992. Under low virus incidence (35.3% in 1991), infection was significantly associated with taller plants (>80 cm). However, when the incidence of infected plants increased by almost two times (69.1%) in 1992, this tendency disappeared and small plants were also infected. Virus infection had significant effects on mortality of agamospermous plants. Almost half of the initial number of marked plants (n=221) died after 1 year of observations. Of those dead plants (n=105), 86 plants (82%) were infected in 1991, indicating that virus infection was an important, but not the sole cause of mortality. In 1992, 116 plants were alive, and of these, 40% were infected in 1991, indicating that some infected plants survived 1 year. Agamospermous plants were classified in three groups according to the extent of virus infection (plants infected in 2 years, infected in 1 year and uninfected plants) to detect the effect of virus infection on growth of plants of E. chinense. Infected plants had significantly lower growth rates than healthy plants. Infected plants also produced significantly fewer seeds than uninfected plants. Virus infection, however, had no significant effect on the probability of reproduction in plants of E. chinense, suggesting that infected plants may reproduce but with a lower seed output. In this study, we showed that virus infection may have a strong effect on demographic traits and, as a consequence, on fitness components of plants of E. chinense. These effects were higher than those sometimes observed in other plant-herbivore or plant-pathogen interactions.  相似文献   

19.
Molecular phylogeny of geminivirus infecting wild plants in Japan   总被引:5,自引:0,他引:5  
Few studies have been made on the molecular divergence of plant viruses. To remedy this deficiency, we examined the molecular divergence of the tobacco leaf curl geminivirus (TLCV). TLCV infects not only tobacco but alsoEupatorium andLonicera in the field and causes yellow vein disease. A total of 29 nucleotide sequences of the replication protein gene (ORF C1) of geminiviruses infecting wild plants ofE. makinoi, E. glehni andL. japonica collected from ten localities was determined. Highly divergent sequences were obtained not only among host plant populations but also within a host population. Phylogenetic analyses showed that the TLCVs infectingEupatorium andLonicera were clustered into three different clades, and were either paraphyletic or polyphyletic. This result is the first evidence demonstrating that wild populations of single plant species possess genetically diversified virus strains. Comparison with recently reported genetic variations of tobacco mild green mosaic tobamovirus (TMGMV) revealed three characteristics of TLCV evolution: (1) a higher nucleotide substitution rate, (2) more frequent migration among geographically isolated host populations, and (3) more frequent host changes to different plant families. While TMGMV is an RNA virus, TLCV has DNA genomes. In animal viruses, RNA viruses tend to evolve faster than DNA viruses. Our results indicated that this trend may not hold for plant viruses.  相似文献   

20.
Intact etioplasts of bean (Phaseolus vulgaris) plants exhibit proteolytic activity against the exogenously added apoprotein of the light-harvesting pigment-protein complex serving photosystem II (LHCII) that increases as etiolation is prolonged. The activity increases in the membrane fraction but not in the stroma, where it remains low and constant and is mainly directed against LHCII and protochlorophyllide oxidoreductase. The thylakoid proteolytic activity, which is low in etioplasts of 6-d-old etiolated plants, increases in plants pretreated with a pulse of light or exposed to intermittent-light (ImL) cycles, but decreases during prolonged exposure to continuous light, coincident with chlorophyll (Chl) accumulation. To distinguish between the control of Chl and/or development on proteolytic activity, we used plants exposed to ImL cycles of varying dark-phase durations. In ImL plants exposed to an equal number of ImL cycles with short or long dark intervals (i.e. equal Chl accumulation but different developmental stage) proteolytic activity increased with the duration of the dark phase. In plants exposed to ImL for equal durations to such light-dark cycles (i.e. different Chl accumulation but same developmental stage) the proteolytic activity was similar. These results suggest that the protease, which is free to act under limited Chl accumulation, is dependent on the developmental stage of the chloroplast, and give a clue as to why plants in ImL with short dark intervals contain LHCII, whereas those with long dark intervals possess only photosystem-unit cores and lack LHCII.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号