首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. Quantitative determination of the anionic polymers present in the walls of Bacillus subtilis var. niger organisms undergoing transition, in a chemostat culture, from either Mg(2+)-limitation to PO(4) (3-)-limitation or K(+)-limitation to PO(4) (3-)-limitation showed that teichuronic acid synthesis started immediately the culture became PO(4) (3-)-limited and proceeded at a rate substantially faster than the rate of biomass synthesis. 2. Simultaneously, the cell-wall teichoic acid content diminished at a rate greater than that due to dilution by newly synthesized wall material, and fragments of teichoic acid and mucopeptide accumulated in the culture extracellular fluid. 3. Equally rapid reverse changes occurred when a PO(4) (3-)-limited B. subtilis var. niger culture was returned to being Mg(2+)-limited. 4. It is concluded that in this organism both teichoic acid and teichuronic acid syntheses are expressions of a single genotype, and a mechanism for the control of synthesis of both polymers is suggested. 5. These results are discussed with reference to the constantly changing environmental conditions that obtain in a batch culture and the variation in bacterial cell-wall composition that is reported to occur throughout the growth cycle.  相似文献   

2.
A study was made to determine whether factors other than the availability of phosphorus were involved in the regulation of synthesis of teichoic and teichuronic acids in Bacillus subtilis subsp. niger WM. First, the nature of the carbon source was varied while the dilution rate was maintained at about 0.3 h-1. Irrespective of whether the carbon source was glucose, glycerol, galactose, or malate, teichoic acid was the main anionic wall polymer whenever phosphorus was present in excess of the growth requirement, and teichuronic acid predominated in the walls of phosphate-limited cells. The effect of growth rate was studied by varying the dilution rate. However, only under phosphate limitation did the wall composition change with the growth rate: walls prepared from cells grown at dilution rates above 0.5 h-1 contained teichoic as well as teichuronic acid, despite the culture still being phosphate limited. The wall content of the cells did not vary with the nature of the growth limitation, but a correlation was observed between the growth rate and wall content. No indications were obtained that the composition of the peptidoglycan of B. subtilis subsp. niger WM was phenotypically variable.  相似文献   

3.
When grown in a chemostat under various nutritional conditions, cells of Bacillus subtilis W23 produce walls containing teichoic acid or teichuronic acid. The binding of Mg2+ to these walls and to the isolated anionic polymers in solution was measured by equilibrium dialysis. In solution the ribitol teichoic acid bound Mg2+ in the molar ratio Mg2+/P=1:1 with an apparent association constant (Kassoc.) of 0.61 X 10(3)M-1, and the teichuronic acid bound Mg2+ in the ratio Mg2+/CO2-=1.1, Kassoc.=0.3 X 10(3)M-1. Cell walls containing teichuronic acid exhibited closely similar binding properties to those containing teichoic acid; in both cases Mg2+ was bound in the ratio Mg/P or Mg/CO2- of 0.5:1 and with a greater affinity than displayed by the isolated polymers in solution. It was concluded that Mg2+ ions are bound bivalently between anionic centres in the walls and that the incorporation of teichoic acid or teichuronic acid into the walls gives rise to similar ion-binding and charged properties. The results are discussed in relation to the possible functions of anionic polymers in cell walls.  相似文献   

4.
Cell walls of Bacillus subtilis W23 contain teichuronic acid when grown in a chemostat under phosphate limitation at a low dilution rate, but teichoic acid at a higher dilution rate. The teichuronic acid was purified and shown to be a polymer of glucuronic acid and N-acetylgalactosamine.  相似文献   

5.
Major sites of metal binding in Bacillus licheniformis walls.   总被引:6,自引:2,他引:4       下载免费PDF全文
Isolated and purified walls of Bacillus licheniformis NCTC 6346 his contained peptidoglycan, teichoic acid, and teichuronic acid (0.36 mumol of diaminopimelic acid, 0.85 mumol of organic phosphorus, and 0.43 mumol of glucuronic acid per mg [dry weight] of walls, respectively). The walls also contained a total of 0.208 mumol of metal per mg. When these walls were subjected to metal-binding conditions (T. J. Beveridge and R. G. E. Murray, J. Bacteriol. 127:1502-1518, 1976) for nine metals, the amount of bound metal above background ranged from 0.910 mumol of Na to 0.031 mumol of Au per mg of walls. Most were in the 0.500-mumol mg-1 range. Electron-scattering profiles from unstained thin sections indicated that the metal was dispersed throughout the wall fabric. Mild alkali treatment extracted teichoic acid from the walls (97% based on phosphorus) but left the peptidoglycan and teichuronic acid intact. This treatment reduced their capacity for all metals but Au. Thin sections revealed that the wall thickness had been reduced by one-third, but metal was still dispersed throughout the wall fabric. Trichloroacetic acid treatment of the teichoic acid-less walls removed 95% of the teichuronic acid (based on glucuronic acid) but left the peptidoglycan intact (based on sedimentable diaminopimelic acid). The thickness of these walls was not further reduced, but little binding capacity remained (usually less than 10% of the original binding). The staining of these walls with Au produced a 14.4-nm repeat frequency within the peptidoglycan fabric. Sedimentation velocity experiments with the extracted teichuronic acid in the presence of metal confirmed it to be a potent metal-complexing polymer. These results indicated that teichoic and teichuronic acids are the prime sites of metal binding in B. licheniformis walls.  相似文献   

6.
Bacillus subtilis Ni15 is deficient in cell wall turnover. The deficiency is removed if the medium contains 0.2 M NaCl, which does not affect growth. The levels of amidase and glucosaminidase, the most likely enzymes involved in turnover, were, in stationary phase Ni15 cells, similar to those in late-exponential phase cells of a standard strain. The Ni15 enzymes were not salt sensitive. However, the Ni15 walls contained 4.7-fold less phosphorus than the walls of the standard strain. Since the phosphorus content of B. subtilis walls reflects the level of teichoic acid, it is proposed that the turnover deficiency of this strain is due to a decrease in wall teichoic acid.  相似文献   

7.
nov-12, a novobiocin-resistant mutant of Bacillus licheniformis ATCC 9945, grows as long chains of cells, a characteristic of autolytic-deficient (Lyt-) mutants. Isolated walls from nov-12 autolyzed at a rate equal to 5% of that displayed by wild-type walls, thus confirming the Lyt- phenotype. Protein-free nov-12 walls displayed marked resistance to, and also failure to bind, added autolysin solubilized from wild-type walls. Comparison of isolated cell walls revealed a deficiency in teichuronic acid in the mutant. Lesser differences were observed in walls of this strain, including a reduction in galactose, an increase in the proportion of peptidoglycan, and small quantitative differences in peptidoglycan composition though the proportions of protein and teichoic acid were similar in walls of both strains. Autolytic sensitivity was studied in walls in which protein, teichoic acid, and teichuronic acid were removed successively by selective extraction procedures. Autolysis of wild-type walls was unaffected by removal or protein or teichoic acid, but teichuronic acid removal rendered wild-type walls as insensitive to autolysis as mutant walls had been throughout. Therefore, in this mutant, deficiency in teichuronic acid alone leads to the Lyt- phenotype and, hence, activity and binding of autolysin(s) are dependent upon teichuronic acid but not teichoic acid. Also, the potential rate of autolysis of cell walls in this organism was correlated with the proportion of teichuronic acid in the wall. The possible significance of these findings with respect to control of autolysis and cell separation is discussed.  相似文献   

8.
Bacillus subtilis var. niger was grown in a chemostat with various growth limitations and at various growth rates. The wall content and composition of the organism grown under these conditions were determined. The wall content, expressed as a percentage of the dry weight of organisms, varied with the growth rate. Analysis of wall samples showed that their composition also varied, particularly with respect to the phosphorus content. Wall samples extracted with trichloroacetic acid under carefully controlled conditions were found to contain various amounts of phosphorus, this being present as a glycerol phosphate polymer containing hexose (glucose and in some cases galactose), i.e. a teichoic aid. Teichoic acids were present in the walls of organisms grown under all conditions except when phosphorus limited growth. Then a different anionic polymer, composed of glucuronic acid and N-acetylgalactosamine (a teichuronic acid), was present. Under the specific growth conditions at pH7.0 and 35 degrees C in a chemostat, teichoic acid and teichuronic acid appeared to be mutually exclusive.  相似文献   

9.
S Kaya  K Yokoyama  Y Araki    E Ito 《Journal of bacteriology》1984,158(3):990-996
The structure of teichoic acid-glycopeptide complexes isolated from lysozyme digests of cell walls of Bacillus subtilis (four strains) and Bacillus licheniformis (one strain) was studied to obtain information on the structural relationship between glycerol teichoic acids and their linkage saccharides. Each preparation of the complexes contained equimolar amounts of muramic acid 6-phosphate and mannosamine in addition to glycopeptide components and glycerol teichoic acid components characteristic of the strain. Upon treatment with 47% hydrogen fluoride, these preparations gave, in common, a hexosamine-containing disaccharide, which was identified as N- acetylmannosaminyl (1----4) N-acetylglucosamine, along with large amounts of glycosylglycerols presumed to be the dephosphorylated repeating units of teichoic acid chains. The glycosylglycerol obtained from each bacterial strain was identified as follows: B. subtilis AHU 1392, glucosyl alpha (1----2)glycerol; B. subtilis AHU 1235, glucosyl beta(1----2) glycerol; B. subtilis AHU 1035 and AHU 1037, glucosyl alpha (1----6)galactosyl alpha (1----1 or 3)glycerol; B. licheniformis AHU 1371, galactosyl alpha (1----2)glycerol. By means of Smith degradation, the galactose residues in the teichoic acid-glycopeptide complexes from B. subtilis AHU 1035 and AHU 1037 and B. licheniformis AHU 1371 were shown to be involved in the backbone chains of the teichoic acid moieties. Thus, the glycerol teichoic acids in the cell walls of five bacterial strains seem to be joined to peptidoglycan through a common linkage disaccharide, N- acetylmannosaminyl (1----4)N-acetylglucosamine, irrespective of the structural diversity in the glycosidic branches and backbone chains.  相似文献   

10.
Wall teichoic acids are anionic, phosphate-rich polymers linked to the peptidoglycan of gram-positive bacteria. In Bacillus subtilis, the predominant wall teichoic acid types are poly(glycerol phosphate) in strain 168 and poly(ribitol phosphate) in strain W23, and they are synthesized by the tag and tar gene products, respectively. Growing evidence suggests that wall teichoic acids are essential in B. subtilis; however, it is widely believed that teichoic acids are dispensable under phosphate-limiting conditions. In the work reported here, we carefully studied the dispensability of teichoic acid under phosphate-limiting conditions by constructing three new mutants. These strains, having precise deletions in tagB, tagF, and tarD, were dependent on xylose-inducible complementation from a distal locus (amyE) for growth. The tarD deletion interrupted poly(ribitol phosphate) synthesis in B. subtilis and represents a unique deletion of a tar gene. When teichoic acid biosynthetic proteins were depleted, the mutants showed a coccoid morphology and cell wall thickening. The new wall teichoic acid biogenesis mutants generated in this work and a previously reported tagD mutant were not viable under phosphate-limiting conditions in the absence of complementation. Cell wall analysis of B. subtilis grown under phosphate-limited conditions showed that teichoic acid contributed approximately one-third of the wall anionic content. These data suggest that wall teichoic acid has an essential function in B. subtilis that cannot be replaced by teichuronic acid.  相似文献   

11.
Morphological mutants of Micrococcus lysodeikticus (luteus) were isolated by treatment with N-methyl-N'-nitro-N-nitrosoguanidine. They occurred on plates in large, regular cell packets, whereas the parent cells usually grew as groups of two or four cells or as short chains. The mutants required a much higher concentration of Mg2+ for growth than the parent cells. The concentrations of Mg2+ and other components of the culture medium tested did not significantly affect the morphology of either the parent or mutant strains. The mutant strains were not agglutinated by antiserum to M. lysodeikticus, which mainly interacts with teichuronic acid on the cell surface, and chemical analysis of isolated cell walls of the mutants indicated the absence of teichuronic aicd. No significant differences were detected between the parent and mutant strains in the amounts of other cell wall components, e.g., peptidoglycan, protein, and teichoic acid. They possible roles of teichuronic acid in cell separation and attachment of divalent cations are discussed.  相似文献   

12.
1. After extraction of teichoic acid from cell walls of Bacillus licheniformis with dilute alkali, the insoluble residue contains the teichuronic acid and mucopeptide components and a small amount of residual phosphorus. 2. A complex of teichuronic acid and a part of the mucopeptide was isolated from the soluble fraction obtained by lysozyme treatment of alkali extracted walls. 3. Small-molecular-weight mucopeptide fragments, not containing teichuronic acid, are obtained from the soluble fraction in yields similar to those obtained after treatment of whole walls or acid-extracted walls with lysozyme. 4. The covalent linkages between teichuronic acid and mucopeptide are broken by treatment with dilute acid. The release of teichuronic acid chains is accompanied by the hydrolysis of N-acetylgalactosaminide linkages and the exposed N-acetylgalactosamine residues form chromogen under very mild conditions, indicating that they are substituted on C-3. 5. The initial rate of formation of reactive N-acetylgalactosamine residues during mild acid hydrolysis is parallel to the rate of extraction under the same conditions of teichuronic acid from alkali-treated insoluble walls, and to the rate of acid hydrolysis of glucose 1-phosphate. 6. The results suggest that the teichuronic acid chains are attached through reducing terminals of N-acetylgalactosamine residues to phosphate groups in the mucopeptide. 7. Muramic acid phosphate was isolated from the insoluble mucopeptide remaining after extraction of walls with dilute alkali followed by dilute acid.  相似文献   

13.
14.
Polyelectrolyte Nature of Bacterial Teichoic Acids   总被引:11,自引:8,他引:3       下载免费PDF全文
Several physicochemical properties of the teichoic acid of Bacillus subtilis 168 have been determined. The teichoic acid partial specific volume was found to be 0.57 ml/g. The apparent weight-average molecular weight of the polymer was 24,800. Sedimentation was strongly dependent on solvent. The sedimentation coefficient of the teichoic acid was found to have a value of s(20.w) (0) = 1.90S. In dilute buffers and distilled water, the teichoic acid possessed a rigid rod or extended conformation. Salts induced a loss of secondary structure in the polymer, resulting in a random coil configuration. Salt-induced structural changes in the teichoic acid were determined by viscosities, ultraviolet difference spectra, and inhibition of precipitation with concanavalin A. Divalent cations such as Mg(2+) had little effect on the teichoic acid structure. The salt-induced structural changes were reversible, as evidenced by return of the original properties upon dialysis of the teichoic acid against water. Sodium chloride inhibited the adsorption of bacteriophage ?25 to B. subtilis cell walls. Teichoic acid conformation may have a significant influence on the physiology of bacteria.  相似文献   

15.
Bacillus subtilis W-23, when placed in phosphate-free medium, ceases to synthesize teichoic acid and synthesizes teichuronic acid. The enzymatic basis for the cessation of teichoic acid synthesis is the irreversible inhibition of the first membrane-bound enzyme involved in teichoic acid synthesis which catalyzes the reaction Undecapenol-P + UDP-GlcNAc leads to undecaprenol-P-P-GlcNAc + UMP.  相似文献   

16.
The Bacillus subtilis cell wall binding protein, CwbA, stimulated the cell wall lytic activities of the B. subtilis and B. licheniformis autolysins (CwlA and CwlM, respectively) in addition to that of the major B. subtilis autolysin (CwlB). Even though the substrate for the enzyme reaction was changed from B. subtilis cell wall containing a teichoic acid to Micrococcus luteus cell wall containing a teichuronic acid, the stimulatory effect of CwbA on CwlA activity was observed.  相似文献   

17.
N Kojima  Y Araki    E Ito 《Journal of bacteriology》1985,161(1):299-306
The structure of the linkage regions between ribitol teichoic acids and peptidoglycan in the cell walls of Staphylococcus aureus H and 209P and Bacillus subtilis W23 and AHU 1390 was studied. Teichoic acid-linked saccharide preparations obtained from the cell walls by heating at pH 2.5 contained mannosamine and glycerol in small amounts. On mild alkali treatment, each teichoic acid-linked saccharide preparation was split into a disaccharide identified as N-acetylmannosaminyl beta(1----4)N-acetylglucosamine and the ribitol teichoic acid moiety that contained glycerol residues. The Smith degradation of reduced samples of the teichoic acid-linked saccharide preparations from S. aureus and B. subtilis gave fragments characterized as 1,2-ethylenediol phosphate-(glycerolphosphate)3-N-acetylmannosaminyl beta(1----4)N- -acetylxylosaminitol and 1,2-ethylenediolphosphate-(glycerol phosphate)2-N-acetylmannosaminyl beta(1----4)N-acetylxylosaminitol, respectively. The binding of the disaccharide unit to peptidoglycan was confirmed by the analysis of linkage-unit-bound glycopeptides obtained from NaIO4 oxidation of teichoic acid-glycopeptide complexes. Mild alkali treatment of the linkage-unit-bound glycopeptides yielded disaccharide-linked glycopeptides, which gave the disaccharide and phosphorylated glycopeptides on mild acid treatment. Thus, it is concluded that the ribitol teichoic acid chains in the cell walls of the strains of S. aureus and B. subtilis are linked to peptidoglycan through linkage units, (glycerol phosphate)3-N-acetylmannosaminyl beta(1----4)N-acetylglucosamine and (glycerol phosphate)2-N-acetylmannosaminyl beta(1----4)N-acetylglucosamine, respectively.  相似文献   

18.
1. Four of the known components of wall preparations of vegative cells of Bacillus licheniformis N.C.T.C. 6346 have been isolated free of each other after successive treatments of the walls with trichloroacetic acid and lysozyme: (a) a mucopeptide consisting of glucosamine, muramic acid, alphain-diaminopimelic acid, glutamic acid and alanine in the molar proportions 1.0:0.8:1.0:1.2:1.7; (b) an insoluble protein; (c) teichoic acid containing phosphorus and glucose in equimolar amounts; (d) teichuronic acid containing equimolar amounts of N-acetylgalactosamine and glucuronic acid, as found by Janczura, Perkins & Rogers (1961). 2. Evidence has been obtained for the presence in the soluble fraction obtained by lysozyme treatment of whole walls of a stable covalent complex of the teichoic acid and the mucopeptide components. 3. The molar ratio of phosphorus to glucose in the teichoic acid present in intact walls or the soluble fractions obtained by extraction of the walls with lysozyme or trichloroacetic acid is 1.0:0.25, in contrast with values of about unity obtained for the purified teichoic acid. 4. Intact walls have been shown to contain polyribitol phosphate chains bearing different amounts of glucose substituents. 5. Trichloroacetic acid extracts of walls also contain polyribitol phosphate compounds of different chain lengths. Dialysis of trichloroacetic acid extracts removes the short chains of polyribitol phosphate that have been found to carry only very low amounts of glucose side chains. By contrast, the longer chains present in the non-diffusible fraction contain phosphorus and glucose in almost equimolar amounts.  相似文献   

19.
Bacillus subtilis 168ts-200B is a temperature-sensitive mutant of B. subtilis 168 which grows as rods at 30 C but as irregular spheres at 45 C. Growth at the nonpermissive temperature resulted in a deficiency of teichoic acid in the cell wall. A decrease in teichoic acid synthesis coupled with the rapid turnover of this polymer led to a progressive loss until less than 20% of the level found in wild-type rods remained in spheres. Extracts of cells grown at 45 C contained amounts of the enzymes involved in the biosynthesis and glucosylation of teichoic acids that were equal to or greater than those found in normal rods. Cell walls of the spheres were deficient also in the endogenous autolytic enzyme (N-acyl muramyl-l-alanine amidase). Genetic analysis of the mutant by PBS1-mediated transduction and deoxyribonucleic acid-mediated transformation demonstrated that the lesion responsible for these effects (tag-1) is tightly linked to the genes which regulate the glucosylation of teichoic acid in the mid-portion of the chromosome of B. subtilis.  相似文献   

20.
Cell wall polymers were measured both in the cells and in the cell-free medium of samples from steady-state chemostat cultures of Bacillus subtilis, growing at various rates under magnesium or phosphate limitation. The presence of both peptidoglycan and anionic wall polymers in the culture supernatant showed the occurrence of wall turnover in these cultures. Variable proportions of the total peptidoglycan present in the culture samples were found outside the cells in duplicate cultures, indicating that the rate of peptidoglycan turnover is variable in B. subtilis. Besides peptidoglycan, anionic wall polymers were detected in the culture supernatant: teichoic acid in magnesium-limited cultures and teichuronic acid in phosphate-limited cultures. In several samples, the ratio between the peptidoglycan and the anionic polymer concentrations was significantly lower in the extracellular fluid than in the walls. This divergency was attributed to the occurrence of direct secretion of anionic polymers after their synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号