首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Neuronal and glial glutamate transporters remove the excitatory neurotransmitter glutamate from the synaptic cleft and thus prevent neurotoxicity. The proteins belong to a large family of secondary transporters, which includes transporters from a variety of bacterial, archaeal and eukaryotic organisms. The transporters consist of eight membrane-spanning alpha-helices and two pore-loop structures, which are unique among secondary transporters but may resemble pore-loops found in ion channels. Another distinctive structural feature is the presence of a highly amphipathic membrane-spanning alpha-helix that provides a hydrophilic path through the membrane. The unusual structural features of the transporters are discussed in relation to their function.  相似文献   

2.
Larsson HP  Elinder F 《Neuron》2000,27(3):573-583
Voltage-gated ion channels undergo slow inactivation during prolonged depolarizations. We investigated the role of a conserved glutamate at the extracellular end of segment 5 (S5) in slow inactivation by mutating it to a cysteine (E418C in Shaker). We could lock the channel in two different conformations by disulfide-linking 418C to two different cysteines, introduced in the Pore-S6 (P-S6) loop. Our results suggest that E418 is normally stabilizing the open conformation of the slow inactivation gate by forming hydrogen bonds with the P-S6 loop. Breaking these bonds allows the P-S6 loop to rotate, which closes the slow inactivation gate. Our results also suggest a mechanism of how the movement of the voltage sensor can induce slow inactivation by destabilizing these bonds.  相似文献   

3.
CutA1 are a protein family present in bacteria, plants, and animals, including humans. Escherichia coli CutA1 is involved in copper tolerance, whereas mammalian proteins are implicated in the anchoring of acetylcholinesterase in neuronal cell membranes. The x-ray structures of CutA1 from E. coli and rat were determined. Both proteins are trimeric in the crystals and in solution through an inter-subunit beta-sheet formation. Each subunit consists of a ferredoxin-like (beta1alpha1beta2beta3alpha2beta4) fold with an additional strand (beta5), a C-terminal helix (alpha3), and an unusual extended beta-hairpin involving strands beta2 and beta3. The bacterial CutA1 is able to bind copper(II) in vitro through His2Cys coordination in a type II water-accessible site, whereas the rat protein precipitates in the presence of copper(II). The evolutionarily conserved trimeric assembly of CutA1 is reminiscent of the architecture of PII signal transduction proteins. This similarity suggests an intriguing role of CutA1 proteins in signal transduction through allosteric communications between subunits.  相似文献   

4.
Vesicular glutamate transporters in cognito   总被引:2,自引:0,他引:2  
Otis TS 《Neuron》2001,29(1):11-14
  相似文献   

5.
6.
A Y-chromosomal DNA fragment is conserved in human and chimpanzee.   总被引:1,自引:0,他引:1  
A human male-specific Y-chromosomal DNA fragment (lambda YH2D6) has been isolated. By deletion-mapping analysis, 2D6 has been localized to the euchromatic portion of the long arm (Yq11) of the human Y chromosome. Among great apes, this fragment was found to be conserved in male chimpanzee but was lacking in male gorilla and male orangutan. No homologous fragments were detected in females of orangutan, gorilla, chimpanzee, or human. Nucleotide sequence analysis indicated the presence of partial-Alu-elements and of sequences similar to the GATA repeats of the snake Bkm sequence.  相似文献   

7.
8.
In the brain, transporters of the major excitatory neurotransmitter glutamate remove their substrate from the synaptic cleft to allow optimal glutamatergic neurotransmission. Their transport cycle consists of two sequential translocation steps, namely cotransport of glutamic acid with three Na(+) ions, followed by countertransport of K(+). Recent studies, based on several crystal structures of the archeal homologue Glt(Ph), indicate that glutamate translocation occurs by an elevator-like mechanism. The resolution of these structures was not sufficiently high to unambiguously identify the sites of Na(+) binding, but functional and computational studies suggest some candidate sites. In the Glt(Ph) structure, a conserved aspartate residue (Asp-390) is located adjacent to a conserved tyrosine residue, previously shown to be a molecular determinant of ion selectivity in the brain glutamate transporter GLT-1. In this study, we characterize mutants of Asp-440 of the neuronal transporter EAAC1, which is the counterpart of Asp-390 of Glt(Ph). Except for substitution by glutamate, this residue is functionally irreplaceable. Using biochemical and electrophysiological approaches, we conclude that although D440E is intrinsically capable of net flux, this mutant behaves as an exchanger under physiological conditions, due to increased and decreased apparent affinities for Na(+) and K(+), respectively. Our present and previous data are compatible with the idea that the conserved tyrosine and aspartate residues, located at the external end of the binding pocket, may serve as a transient or stable cation binding site in the glutamate transporters.  相似文献   

9.
l-Glutamate is the major excitatory transmitter in the vertebrate retina and plays a central role in the transmission of the various retinal neurons. Glutamate is removed from the extracellular space by at least five different glutamate transporters. The cellular distribution of these has been studied so far mainly using immunocytochemistry. In the present study non-radioactive in situ hybridisation using complementary RNA probes was applied in order to identify the cell types of rat retina and optic nerve expressing generic GLT1, GLT1 variant (GLT1v or GLT1B), GLAST and EAAC1. The results were compared with immunocytochemical data achieved using affinity-purified antibodies against transporter peptides. In the immunohistochemical studies the human retina was included. The study showed that in the rat retina GLT1v and EAAC1 were coexpressed in various cell types, i.e. photoreceptor, bipolar, horizontal, amacrine, ganglion and Müller cells, whereas GLAST was only detected in Müller cells and astrocytes. In the rat optic nerve GLT1v and EAAC1 were preferentially expressed in oligodendrocytes, whereas GLAST was revealed to be present mainly in astrocytes. Generic GLT1 could not be detected in the retina or optic nerve. The cellular distribution of glutamate transporters (only immunocytochemistry) in the human retina was very similar to that of the rat retina. Remarkable results of our studies were that generic GLT1 was not detectable in the rat (and human) retina and that GLT1v and EAAC1 were demonstrable in most cell types of the retina (including photoreceptor cells and their terminals).  相似文献   

10.
  1. Download : Download high-res image (339KB)
  2. Download : Download full-size image
  相似文献   

11.
Monoclonal antibody 2909 belongs to a class of potently neutralizing antibodies that recognize quaternary epitopes on HIV-1. Some members of this class, such as 2909, are strain specific, while others, such as antibody PG16, are broadly neutralizing; all, however, recognize a region on the gp120 envelope glycoprotein that includes two loops (V2 and V3) and forms appropriately only in the oligomeric HIV-1 spike (gp1203/gp413). Here we present the crystal structure of 2909 and report structure-function analysis with antibody chimeras composed of 2909 and other members of this antibody class. The 2909 structure was dominated by a heavy-chain third-complementarity-determining region (CDR H3) of 21 residues, which comprised 36% of the combining surface and formed a β-hairpin club extending ∼20 Å beyond the rest of the antibody. Sequence analysis and mass spectrometry identified sites of tyrosine sulfation at the middle and top of CDR H3; substitutions with phenylalanine either ablated (middle substitution) or substantially diminished (top substitution) neutralization. Chimeric antibodies composed of heavy and light chains, exchanged between 2909 and other members of the class, indicated a substantial lack of complementation. Comparison of 2909 to PG16 (which is tyrosine sulfated and the only other member of the class for which a structure has previously been reported) showed that both utilize protruding, anionic CDR H3s for recognition. Thus, despite some diversity, members of this class share structural and functional similarities, with conserved features of the CDR H3 subdomain likely reflecting prevalent solutions by the human immune system for recognition of a quaternary site of HIV-1 vulnerability.Identification of conserved regions accessible on the HIV-1 envelope and design of immunogens that elicit broadly neutralizing antibodies against these sites continue to be major challenges in the development of an effective HIV-1 vaccine. The HIV-1 viral spike—composed of three exterior gp120 subunits and three transmembrane gp41 subunits—is highly protected, but a limited number of these conserved regions exist on the spike, identified primarily by the broadly neutralizing antibodies that target them. One region is quaternary in nature and appropriately formed only on the assembled viral spike (gp1203/gp413). This region is targeted by a recently discovered (14) and fast expanding class of monoclonal antibodies (36, 40) that recognize epitopes with quaternary structural constraints, which are composed of portions of two gp120-variable loops, V2 and V3 (reviewed in reference 49). These quaternary structure-specific (or quaternary-specific) antibodies (also called quaternary-neutralizing epitope or “QNE” antibodies) are found in the sera of selected HIV-1-infected individuals who have broadly neutralizing serum antibodies (41); individual members of the class, however, vary greatly in their breadth of neutralization.Initial evidence for the existence of quaternary-specific antibodies arose in simian/human immunodeficiency virus-infected rhesus macaques and HIV-1-infected chimpanzees (6, 9, 13). Characterization of polyclonal sera from these infected animals suggested the presence of antibodies targeting a conformational epitope involving the variable loop regions of the gp120 viral envelope.Antibody 2909 was the first human monoclonal antibody against HIV-1 to be characterized as being specific for an epitope dependent on the quaternary interaction of envelope glycoproteins (14). It was identified by direct screening for neutralization activity against a pseudovirus derived from strain SF162 of HIV-1. It recognizes a quaternary epitope on the surface of native virions and infected cells but does not bind soluble gp120/gp140 envelope proteins or cell surface-expressed gp120 monomers (14, 20). Competition analysis and virological assays indicate that the 2909 epitope includes portions of the V2 and V3 loops of gp120 (14, 16), with the V2-V3 elements originating either from within a gp120 monomer or between gp120 protomers in the trimer context. Mapping of 2909 recognition identifies a particular anomaly in its recognition (16); neutralization by 2909 depends on the presence of a rare lysine at position 160 in the V2 loop rather than the conserved N-linked site of glycosylation found at this position in most HIV-1 isolates (providing a residue-specific explanation for the neutralization specificity of 2909 for the SF162 virus, which contains this rare lysine).Other strain-specific monoclonal antibodies like 2909 have been isolated from rhesus macaques infected with a chimeric simian/human immunodeficiency virus that contained an SF162 isolate-derived viral spike (SHIVSF162P4) (36). These rhesus monoclonal antibodies exhibit properties similar to those of 2909 in their potent neutralization of SF162 and their recognition of V2-V3 only in the context of the functional viral spike (e.g., on virus particles) (36). Details from epitope mapping indicate that these rhesus antibodies and human antibody 2909 recognize overlapping epitopes, with some differences in requirements for V2 N-linked glycosylation (36).The somatically related human monoclonal antibodies, PG9 and PG16, were also identified by a direct screen for neutralization (40). They target a quaternary-specific V2-V3 epitope, but unlike 2909, they neutralize an extraordinary 70 to 80% of circulating primary HIV-1 isolates and appear to have some reactivity for monomeric gp120 (40). Much of their increased breadth of neutralization arises from their ability to recognize an N-linked glycan at position 160 in the V2 loop, a motif which is found in greater than 90% of HIV-1 group M isolates (25).Despite substantial differences in their neutralization breadth, antibodies 2909 and PG9/PG16 may be closely related. Notably, an N160K mutation in the V2 loop of typical primary HIV-1 isolates like YU2 and JR-FL can recover 2909 activity (16). Conversely, isolate SF162 can be converted to a PG9- and PG16-sensitive pseudovirus by the K160N mutation (40). Thus, a single N or K at position 160 appears to control much of the neutralization difference between 2909 and PG16. Together the results suggest that 2909 and PG9/PG16 antibodies recognize distinct immunotypes of a similar quaternary epitope.To gain insight into how antibodies achieve recognition of this epitope, we determined the crystal structure of the antigen-binding fragment (Fab) of 2909 at a 3.3-Å resolution and compared this structure to the previously determined structure of PG16 (31, 33). Mutational analysis was used to confirm structural hot spots, and chimeric analysis of domain swaps between 2909 and other quaternary-specific antibodies was used to refine assessments of functional similarity. By identifying structural features—shared between 2909 and PG16 but otherwise highly uncommon in antibodies—the results provide insight into conserved solutions by human antibodies for recognition of an important vaccine target on HIV-1.  相似文献   

12.
As membrane transporter proteins, VGLUT1-3 mediate the uptake of glutamate into synaptic vesicles at presynaptic nerve terminals of excitatory neural cells. This function is crucial for exocytosis and the role of glutamate as the major excitatory neurotransmitter in the central nervous system. The three transporters, sharing 76% amino acid sequence identity in humans, are highly homologous but differ in regional expression in the brain. Although little is known regarding their three-dimensional structures, hydropathy analysis on these proteins predicts 12 transmembrane segments connected by loops, a topology similar to other members in the major facilitator superfamily, where VGLUT1-3 have been phylogenetically classified. In this work, we present a three-dimensional model for the human VGLUT1 protein based on its distant bacterial homolog in the same superfamily, the glycerol-3-phosphate transporter from Escherichia coli. This structural model, stable during molecular dynamics simulations in phospholipid bilayers solvated by water, reveals amino acid residues that face its pore and are likely to affect substrate translocation. Docking of VGLUT1 substrates to this pore localizes two different binding sites, to which inhibitors also bind with an overall trend in binding affinity that is in agreement with previously published experimental data.  相似文献   

13.
Glutamate transporters are essential for terminating synaptic excitation and for maintaining extracellular glutamate concentrations below neurotoxic levels. These transporters also mediate a thermodynamically uncoupled chloride flux, activated by two of the molecules they transport, sodium and glutamate. Five eukaryotic glutamate transporters have been cloned and identified. They exhibit approximately 50% identity and this homology is even greater at the carboxyl terminal half, which is predicted to have an unusual topology. Determination of the topology shows that the carboxyl terminal part contains several transmembrane domains separated by two reentrant loops that are in close proximity to each other. We have identified several conserved amino acid residues in the carboxyl terminal half that play crucial roles in the interaction of the transporter with its substrates: sodium, potassium and glutamate. The conformation of the transporter gating the anion conductance is different from that during substrate translocation. However, there exists a dynamic equilibrium between these conformations.  相似文献   

14.
15.
The initial step in target cell infection by human, and the closely related simian immunodeficiency viruses (HIV and SIV, respectively) occurs with the binding of trimeric envelope glycoproteins (Env), composed of heterodimers of the viral transmembrane glycoprotein (gp41) and surface glycoprotein (gp120) to target T-cells. Knowledge of the molecular structure of trimeric Env on intact viruses is important both for understanding the molecular mechanisms underlying virus-cell interactions and for the design of effective immunogen-based vaccines to combat HIV/AIDS. Previous analyses of intact HIV-1 BaL virions have already resulted in structures of trimeric Env in unliganded and CD4-liganded states at ∼20 Å resolution. Here, we show that the molecular architectures of trimeric Env from SIVmneE11S, SIVmac239 and HIV-1 R3A strains are closely comparable to that previously determined for HIV-1 BaL, with the V1 and V2 variable loops located at the apex of the spike, close to the contact zone between virus and cell. The location of the V1/V2 loops in trimeric Env was definitively confirmed by structural analysis of HIV-1 R3A virions engineered to express Env with deletion of these loops. Strikingly, in SIV CP-MAC, a CD4-independent strain, trimeric Env is in a constitutively “open” conformation with gp120 trimers splayed out in a conformation similar to that seen for HIV-1 BaL Env when it is complexed with sCD4 and the CD4i antibody 17b. Our findings suggest a structural explanation for the molecular mechanism of CD4-independent viral entry and further establish that cryo-electron tomography can be used to discover distinct, functionally relevant quaternary structures of Env displayed on intact viruses.  相似文献   

16.
17.
The missense mutation Arg-120 to Gly (R120G) in the human alphaBeta-crystallin sequence has been reported to be associated with autosomal dominant myopathy, cardiomyopathy, and cataract. Previous studies of the mutant showed a significant ability to aggregate in cultured cells and an increased oligomeric size coupled to an important loss of the chaperone-like activity in vitro. The aim of this study was to further analyze the role of the R120 residue in the structural and functional properties of alphaBeta-crystallin. The following mutants were generated, Arg-120 to Gly (R120G), Cys (R120C), Lys (R120K), and Asp (R120D). In cellulo, after expression in two cultured cell lines, NIH-3T3 and Cos-7, the capacity of the wild-type and mutant crystallins to aggregate was evaluated and the protein location was determined by immunofluorescence. In vitro, the wild-type and mutant crystallins were expressed in Escherichia coli cells, purified by size exclusion chromatography, and characterized using dynamic light scattering, electron microscopy, and chaperone-like activity assays. Aggregate sizes in cellulo and in vitro were analyzed. The whole of the data showed that the preservation of an Arg residue at position 120 of alphaBeta-crystallin is critical for the structural and functional integrity of the protein and that each mutation results in specific changes in both structural and functional characteristics.  相似文献   

18.
Cysteine is the limiting precursor forglutathione synthesis. Because of its low bioavailability, cysteine isgenerally produced from cystine, which may be taken up through twodifferent transporters. The cystine/glutamate antiporter(x system) transports extracellular cystine inexchange for intracellular glutamate. The XAG transportsystem takes up extracellular cystine, glutamate, and aspartate. Bothare sensitive to competition between cystine and glutamate, and excessextracellular glutamate thus inhibits glutathione synthesis, anonexcitotoxic mechanism for glutamate toxicity. We demonstratedpreviously that human macrophages express the glutamate transportersexcitatory amino acid transporter (EAAT)1 and EAAT2 (which do nottransport cystine, X system) and overcomecompetition for the use of cystine transporters. We now showthat macrophages take up cystine through the x andnot the XAG system. We also found that glutamate, although competing with cystine uptake, dose-dependently increases glutathione synthesis. We used inhibitors to demonstrate that this increase ismediated by EAATs. EAAT expression in macrophages thus leads toglutamate-dependent enhancement of glutathione synthesis by providingintracellular glutamate for direct insertion in glutathione and alsofor fueling the intracellular pool of glutamate andtrans-stimulating the cystine/glutamate antiporter.

  相似文献   

19.
Haplotype block structure is conserved across mammals   总被引:2,自引:0,他引:2  
Genetic variation in genomes is organized in haplotype blocks, and species-specific block structure is defined by differential contribution of population history effects in combination with mutation and recombination events. Haplotype maps characterize the common patterns of linkage disequilibrium in populations and have important applications in the design and interpretation of genetic experiments. Although evolutionary processes are known to drive the selection of individual polymorphisms, their effect on haplotype block structure dynamics has not been shown. Here, we present a high-resolution haplotype map for a 5-megabase genomic region in the rat and compare it with the orthologous human and mouse segments. Although the size and fine structure of haplotype blocks are species dependent, there is a significant interspecies overlap in structure and a tendency for blocks to encompass complete genes. Extending these findings to the complete human genome using haplotype map phase I data reveals that linkage disequilibrium values are significantly higher for equally spaced positions in genic regions, including promoters, as compared to intergenic regions, indicating that a selective mechanism exists to maintain combinations of alleles within potentially interacting coding and regulatory regions. Although this characteristic may complicate the identification of causal polymorphisms underlying phenotypic traits, conservation of haplotype structure may be employed for the identification and characterization of functionally important genomic regions.  相似文献   

20.
Glutamate transporters are unusual proteins in that they can function as both a transporter and a chloride channel. With the recent determination of the crystal structure of an archaeal aspartate transporter it is now possible to begin to put together a physical picture of how these proteins are able to carry out their dual functions. In this review we shall discuss our current understanding of the functional states of glutamate transporters and how they may arise. We will also discuss some of the alternate conducting states of glutamate transporters and provide definitions of the various states.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号