首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The small GTPase RhoA modulates the adhesive nature of many cell types; however, despite high levels of expression in platelets, there is currently limited evidence for an important role for this small GTPase in regulating platelet adhesion processes. In this study, we have examined the role of RhoA in regulating the adhesive function of the major platelet integrin, alpha(IIb)beta(3). Our studies demonstrate that activation of RhoA occurs as a general feature of platelet activation in response to soluble agonists (thrombin, ADP, collagen), immobilized matrices (von Willebrand factor (vWf), fibrinogen) and high shear stress. Blocking the ligand binding function of integrin alpha(IIb)beta(3), by pretreating platelets with c7E3 Fab, demonstrated the existence of integrin alpha(IIb)beta(3)-dependent and -independent mechanisms regulating RhoA activation. Inhibition of RhoA (C3 exoenzyme) or its downstream effector Rho kinase had no effect on integrin alpha(IIb)beta(3) activation induced by soluble agonists or adhesive substrates, however, both inhibitors reduced shear-dependent platelet adhesion on immobilized vWf and shear-induced platelet aggregation in suspension. Detailed analysis of the sequential adhesive steps required for stable platelet adhesion on a vWf matrix under shear conditions revealed that RhoA did not regulate platelet tethering to vWf or the initial formation of integrin alpha(IIb)beta(3) adhesion contacts but played a major role in sustaining stable platelet-matrix interactions. These studies define a critical role for RhoA in regulating the stability of integrin alpha(IIb)beta(3) adhesion contacts under conditions of high shear stress.  相似文献   

2.
This study investigates three aspects of the adhesive interaction operating between platelet glycoprotein Ib/IX and integrin alpha(IIb)beta(3). These include the following: 1) examining the sufficiency of GPIb/IX and integrin alpha(IIb)beta(3) to mediate irreversible cell adhesion on immobilized von Willebrand factor (vWf) under flow; 2) the ability of the vWf-GPIb interaction to induce integrin alpha(IIb)beta(3) activation independent of endogenous platelet stimuli; and 3) the identification of key second messengers linking the vWf-GPIb/IX interaction to integrin alpha(IIb)beta(3) activation. By using Chinese hamster ovary cells transfected with GPIb/IX and integrin alpha(IIb)beta(3), we demonstrate that these receptors are both necessary and sufficient to mediate irreversible cell adhesion under flow, wherein GPIb/IX mediates cell tethering and rolling on immobilized vWf, and integrin alpha(IIb)beta(3) mediates cell arrest. Moreover, we demonstrate direct signaling between GPIb/IX and integrin alpha(IIb)beta(3). Studies on human platelets demonstrated that vWf binding to GPIb/IX is able to induce integrin alpha(IIb)beta(3) activation independent of endogenous platelet stimuli under both static and physiological flow conditions (150-1800 s(-)(1)). Analysis of the key second messengers linking the vWf-GPIb interaction to integrin alpha(IIb)beta(3) activation demonstrated that the first step in the activation process involves calcium release from internal stores, whereas transmembrane calcium influx is a secondary event potentiating integrin alpha(IIb)beta(3) activation.  相似文献   

3.
We have investigated the calcium signaling relationship between the two major platelet adhesion receptors, glycoprotein Ib/V/IX (GPIb/V/IX) and integrin alpha(IIb)beta(3), involved in regulating platelet adhesion on von Willebrand factor (vWf) under flow. Our studies demonstrate that GPIb engagement of immobilized vWf elicits a transient calcium spike that may function to promote reversible arrest of translocating platelets. Subsequent integrin alpha(IIb)beta(3) engagement of vWf promotes sustained calcium oscillations that are essential for the maintenance of irreversible adhesion. GPIb-induced calcium spikes appear distinct from those initiated by integrin alpha(IIb)beta(3), in that the former are exclusively mediated through release of intracellular calcium stores via a signaling mechanism independent of PI 3-kinase. In contrast, integrin alpha(IIb)beta(3)-dependent calcium flux involves a PI 3-kinase-dependent signaling mechanism linked to intracellular calcium mobilization and subsequent transmembrane calcium influx. Studies employing the caged calcium chelator (o-nitrophenyl-EGTA) demonstrate that transient calcium spikes initiate a transient phase of platelet arrest that is converted to irreversible adhesion with the development of sustained oscillatory calcium flux. These studies demonstrate the existence of a dual step calcium signaling mechanism utilized by GPIb and integrin alpha(IIb)beta(3) that serves to regulate the dynamics of platelet adhesion under flow.  相似文献   

4.
Excessive accumulation of platelets at sites of athero-sclerotic plaque rupture leads to the development of arterial thrombi, precipitating clinical events such as the acute coronary syndromes and ischemic stroke. The major platelet adhesion receptor glycoprotein (GP) IIb-IIIa (integrin alpha(IIb)beta3) plays a central role in this process by promoting platelet aggregation and thrombus formation. We demonstrate here a novel mechanism down-regulating integrin alpha(IIb)beta3 adhesive function, involving platelet factor XIII (FXIII) and calpain, which serves to limit platelet aggregate formation and thrombus growth. This mechanism principally occurs in collagen-adherent platelets and is induced by prolonged elevations in cytosolic calcium, leading to dramatic changes in platelet morphology (membrane contraction, fragmentation, and microvesiculation) and a specific reduction in integrin alpha(IIb)beta3 adhesive function. Adhesion receptor signal transduction plays a major role in the process by sustaining cytosolic calcium flux necessary for calpain and FXIII activation. Analysis of thrombus formation on a type I fibrillar collagen substrate revealed an important role for FXIII and calpain in limiting platelet recruitment into developing aggregates, thereby leading to reduced thrombus formation. These studies define a previously unidentified role for platelet FXIII and calpain in regulating integrin alpha(IIb)beta3 adhesive function. Moreover, they demonstrate the existence of an autoregulatory feedback mechanism that serves to limit excessive platelet accumulation on highly reactive thrombogenic surfaces.  相似文献   

5.
In platelets, alpha(IIb)beta(3) exists in a form that cannot bind adhesive proteins in the plasma; although it can interact with immobilized fibrinogen it cannot interact with immobilized von Willebrand factor in the vessel wall. Soluble agonists such as thrombin convert alpha(IIb)beta(3) to a form that recognizes soluble and immobilized ligands. Attempts to reconstitute alpha(IIb)beta(3) activation in a non-hematopoietic, nucleated cell system have been unsuccessful. In the present study, we have developed a transfected Chinese hamster ovary cell model in which alpha(IIb)beta(3) activation is induced by signaling across glycoprotein (GP) Ib-IX by its ligand, von Willebrand factor. GPIb-IX activates not only the transfected alpha(IIb)beta(3) but also endogenous alpha(v)beta(3). Activation of the pathways leading to integrin activation occurred even in cells transfected with GPIb-IX lacking the domain on GPIbalpha that binds 14-3-3 or that which binds actin-binding protein. These studies demonstrate that signals induced by interaction of GPIb-IX with von Willebrand factor lead to alpha(IIb)beta(3) activation and suggest that the signaling pathways by which GPIb-IX induces alpha(IIb)beta(3) activation are different to those used by thrombin. Elucidation of these differences may provide insights into therapeutic ways in which to inhibit integrin activation in selective clinical settings.  相似文献   

6.
Platelet activation at sites of vascular injury is essential for the arrest of bleeding; however, excessive platelet accumulation at regions of atherosclerotic plaque rupture can result in the development of arterial thrombi, precipitating diseases such as acute myocardial infarction and ischemic stroke. Rheological disturbances (high shear stress) have an important role in promoting arterial thrombosis by enhancing the adhesive and signaling function of platelet integrin alpha(IIb)beta(3) (GPIIb-IIIa). In this study we have defined a key role for the Type Ia phosphoinositide 3-kinase (PI3K) p110beta isoform in regulating the formation and stability of integrin alpha(IIb)beta(3) adhesion bonds, necessary for shear activation of platelets. Isoform-selective PI3K p110beta inhibitors have been developed which prevent formation of stable integrin alpha(IIb)beta(3) adhesion contacts, leading to defective platelet thrombus formation. In vivo, these inhibitors eliminate occlusive thrombus formation but do not prolong bleeding time. These studies define PI3K p110beta as an important new target for antithrombotic therapy.  相似文献   

7.
Integrin alpha(IIb)beta(3) plays a critical role in platelet function, promoting a broad range of functional responses including platelet adhesion, spreading, aggregation, clot retraction, and platelet procoagulant function. Signaling events operating downstream of this receptor (outside-in signaling) are important for these responses; however the mechanisms negatively regulating integrin alpha(IIb)beta(3) signaling remain ill-defined. We demonstrate here a major role for the Src homology 2 domain-containing inositol 5-phosphatase (SHIP1) and Src family kinase, Lyn, in this process. Our studies on murine SHIP1 knockout platelets have defined a major role for this enzyme in regulating integrin alpha(IIb)beta(3)-dependent phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P(3)) accumulation, necessary for a cytosolic calcium response and platelet spreading. SHIP1 phosphorylation and PtdIns(3,4,5)P(3) metabolism is partially regulated through Lyn kinase, resulting in an enhanced calcium flux and spreading response in Lyn-deficient mouse platelets. Analysis of platelet adhesion dynamics under physiological blood flow conditions revealed an important role for SHIP1 in regulating platelet adhesion on fibrinogen. Specifically, SHIP1-dependent PtdIns(3,4,5)P(3) metabolism down-regulates the stability of integrin alpha(IIb)beta(3)-fibrinogen adhesive bonds, leading to a decrease in the proportion of platelets forming shear-resistant adhesion contacts. These studies define a major role for SHIP1 and Lyn as negative regulators of integrin alpha(IIb)beta(3) adhesive and signaling function.  相似文献   

8.
Platelet adhesion to sites of vascular injury is initiated by the binding of the platelet glycoprotein (GP) Ib-V-IX complex to matrix-bound von Willebrand factor (vWf). This receptor-ligand interaction is characterized by a rapid on-off rate that enables efficient platelet tethering and rolling under conditions of rapid blood flow. We demonstrate here that platelets adhering to immobilized vWf under flow conditions undergo rapid morphological conversion from flat discs to spiny spheres during surface translocation. Studies of Glanzmann thrombasthenic platelets (lacking integrin alpha(IIb)beta(3)) and Chinese hamster ovary (CHO) cells transfected with GPIb/IX (CHO-Ib/IX) confirmed that vWf binding to GPIb/IX was sufficient to induce actin polymerization and cytoskeletal reorganization independent of integrin alpha(IIb)beta(3). vWf-induced cytoskeletal reorganization occurred independently of several well characterized signaling processes linked to platelet activation, including calcium influx, prostaglandin metabolism, protein tyrosine phosphorylation, activation of protein kinase C or phosphatidylinositol 3-kinase but was critically dependent on the mobilization of intracellular calcium. Studies of Oregon Green 488 1, 2-bis(o-amino-5-fluorophenoxy)ethane-N,N,N',N-tetraacetic acid tetraacetoxymethyl ester-loaded platelets and CHO-Ib/IX cells demonstrated that these cells mobilize intracellular calcium in a shear-dependent manner during surface translocation on vWf. Taken together, these studies suggest that the vWf-GPIb interaction stimulates actin polymerization and cytoskeletal reorganization in rolling platelets via a shear-sensitive signaling pathway linked to intracellular calcium mobilization.  相似文献   

9.
Cross-linking platelet GPIb with the snake C-type lectin echicetin provides a specific technique for activation via this receptor. This allows GPIb-dependent mechanisms to be studied without the necessity for shear stress-induced binding of von Willebrand factor or primary alpha(IIb)beta(3) involvement. We already showed that platelets are activated, including tyrosine phosphorylation, by echicetin-IgMkappa-induced GPIb cross-linking. We now investigate the mechanism further and demonstrate that platelets, without modulator reagents, spread directly on an echicetin-coated surface, by a GPIb-specific mechanism, causing exocytosis of alpha-granule markers (P-selectin) and activation of alpha(IIb)beta(3). This spreading requires actin polymerization and release of internal calcium stores but is not dependent on external calcium nor on src family tyrosine kinases. Cross-linking of GPIb complex molecules on platelets, either in suspension or via specific surface attachment, is sufficient to induce platelet activation.  相似文献   

10.
Platelet adhesion to fibrinogen is important for platelet aggregation and thrombus growth. In this study we have examined the mechanisms regulating platelet adhesion on immobilized fibrinogen under static and shear conditions. We demonstrate that integrin alpha IIb beta 3 engagement of immobilized fibrinogen is sufficient to induce an oscillatory calcium response, necessary for lamellipodial formation and platelet spreading. Released ADP increases the proportion of platelets exhibiting a cytosolic calcium response but is not essential for calcium signaling or lamellipodial extension. Pretreating platelets with the Src kinase inhibitor PP2, the inositol 1,4,5-trisphosphate (IP3) receptor antagonist 2-aminoethoxydiphenyl borate (APB-2), or the phospholipase C (PLC) inhibitor U73122 abolished calcium signaling and platelet spreading, suggesting a major role for Src kinase-regulated PLC isoforms in these processes. Analysis of PLC gamma 2-/- mouse platelets revealed a major role for this isoform in regulating cytosolic calcium flux and platelet spreading on fibrinogen. Under flow conditions, platelets derived from PLC gamma 2-/- mice formed less stable adhesive interactions with fibrinogen, particularly in the presence of ADP antagonists. Our studies define an important role for PLC gamma 2 in integrin alpha IIb beta 3-dependent calcium flux, necessary for stable platelet adhesion and spreading on fibrinogen. Furthermore, they establish an important cooperative signaling role for PLC gamma 2 and ADP in regulating platelet adhesion efficiency on fibrinogen.  相似文献   

11.
Integrin alpha(IIb)beta(3) activation is critical for platelet physiology and is controlled by signal transduction through kinases and phosphatases. Compared with kinases, a role for phosphatases in platelet integrin alpha(IIb)beta(3) signaling is less understood. We report that the catalytic subunit of protein phosphatase 2A (PP2Ac) associates constitutively with the integrin alpha(IIb)beta(3) in resting platelets and in human embryonal kidney 293 cells expressing alpha(IIb)beta(3). The membrane proximal KVGFFKR sequence within the cytoplasmic domain of integrin alpha(IIb) is sufficient to support a direct interaction with PP2Ac. Fibrinogen binding to alpha(IIb)beta(3) during platelet adhesion decreased integrin-associated PP2A activity and increased the phosphorylation of a PP2A substrate, vasodilator associated phosphoprotein. Overexpression of PP2Ac(alpha) in 293 cells decreased alpha(IIb)beta(3)-mediated adhesion to immobilized fibrinogen. Conversely, small interference RNA mediated knockdown of endogenous PP2Ac(alpha) expression in 293 cells, enhanced extracellular signal-regulated kinase (ERK1/2) and p38 activation, and accelerated alpha(IIb)beta(3) adhesion to fibrinogen and von Willebrand factor. Inhibition of ERK1/2, but not p38 activation, abolished the increased adhesiveness of PP2Ac (alpha)-depleted 293 cells to fibrinogen. Furthermore, knockdown of PP2A(calpha) expression in bone marrow-derived murine megakaryocytes increased soluble fibrinogen binding induced by protease-activated receptor 4-activating peptide. These studies demonstrate that PP2Ac (alpha) can negatively regulate integrin alpha(IIb)beta(3) signaling by suppressing the ERK1/2 signaling pathway.  相似文献   

12.
Binding of von Willebrand factor (VWF) to GP Ib-IX mediates initial platelet adhesion and increases the subsequent adhesive function of alpha(IIb)beta(3). Because these responses are promoted most effectively by large VWF multimers, we hypothesized that receptor clustering modulates GP Ib-IX function. To test this, GP IX was fused at its cytoplasmic tail to tandem repeats of FKBP, and GP Ib-IX(FKBP)(2) and alpha(IIb)beta(3) were expressed in Chinese hamster ovary cells. Under flow conditions at wall shear rates of up to 2000 s(-1), GP Ib-IX(FKBP)(2) mediated cell tethering to immobilized VWF, just as in platelets. Conditional oligomerization of GP Ib-IX(FKBP)(2) by AP20187, a cell-permeable FKBP dimerizer, caused a decrease in cell translocation velocities on VWF (p < 0.001). Moreover, clustering of GP Ib-IX(FKBP)(2) by AP20187 led to an increase in alpha(IIb)beta(3) function, manifested under static conditions by increased cell adhesion to fibrinogen (p < 0.01) and under flow by increased stable cell adhesion to VWF (p < 0.04). Clustering of GP Ib-IX(FKBP)(2) also stimulated rapid tyrosine phosphorylation of ectopically expressed Syk, a putative downstream effector of GP Ib-IX in platelets. These studies establish that GP Ib-IX oligomerization, per se, affects the interaction of this receptor with VWF and its ability to influence the adhesive function of alpha(IIb)beta(3). By extrapolation, GP Ib-IX clustering in platelets may promote thrombus formation.  相似文献   

13.
Platelet activation is a complex process induced by a variety of stimuli, which act in concert to ensure the rapid formation of a platelet plug at places of vascular injury. We show here that fibrillar collagen, which initiates platelet activation at the damaged vessel wall, activates only a small fraction of platelets in suspension directly, whereas the majority of platelets becomes activated by mediators released from collagen-activated platelets. In Galpha(q)-deficient platelets that do not respond with activation of integrin alpha(IIb)beta(3) to a variety of mediators like thromboxane A2 (TXA2), thrombin, or ADP, collagen at high concentrations was able to induce aggregation, an effect that could be blocked by antagonists of the TXA2 or P2Y12 receptors. The activation of TXA2 or P2Y12 receptors alone, which in Galpha(q)-deficient platelets couple to G12/G13 and Gi, respectively, did not induce platelet integrin activation or aggregation. However, concomitant activation of both receptors resulted in irreversible integrin alpha(IIb)beta3-mediated aggregation of Galpha(q)-deficient platelets. Thus, the activation of G12/G13- and Gi-mediated signaling pathways is sufficient to induce integrin alpha(IIb)beta3 activation. Although G(q)-mediated signaling plays an important role in platelet activation, it is not strictly required for the activation of integrin alpha(IIb)beta3. This indicates that the efficient induction of platelet aggregation through G-protein-coupled receptors is an integrated response mediated by various converging G-protein-mediated signaling pathways involving G(q) and G(i) as well as G12/G13.  相似文献   

14.
Platelet adhesion on and activation by components of the extracellular matrix are crucial to arrest post-traumatic bleeding, but can also harm tissue by occluding diseased vessels. Integrin alpha2beta1 is thought to be essential for platelet adhesion to subendothelial collagens, facilitating subsequent interactions with the activating platelet collagen receptor, glycoprotein VI (GPVI). Here we show that Cre/loxP-mediated loss of beta1 integrin on platelets has no significant effect on the bleeding time in mice. Aggregation of beta1-null platelets to native fibrillar collagen is delayed, but not reduced, whereas aggregation to enzymatically digested soluble collagen is abolished. Furthermore, beta1-null platelets adhere to fibrillar, but not soluble collagen under static as well as low (150 s(-1)) and high (1000 s(-1)) shear flow conditions, probably through binding of alphaIIbbeta3 to von Willebrand factor. On the other hand, we show that platelets lacking GPVI can not activate integrins and consequently fail to adhere to and aggregate on fibrillar as well as soluble collagen. These data show that GPVI plays the central role in platelet-collagen interactions by activating different adhesive receptors, including alpha2beta1 integrin, which strengthens adhesion without being essential.  相似文献   

15.
We have recently shown that the platelet integrin alpha(IIb)beta(3) is activated by von Willebrand factor (vWF) binding to its platelet receptor, glycoprotein Ib-IX (GPIb-IX), via the protein kinase G (PKG) signaling pathway. Here we show that GPIb-IX-mediated activation of integrin alpha(IIb)beta(3) is inhibited by dominant negative mutants of Raf-1 and MEK1 in a reconstituted integrin activation model in Chinese hamster ovary (CHO) cells and that the integrin-dependent platelet aggregation induced by either vWF or low dose thrombin is inhibited by MEK inhibitors PD98059 and U0126. Thus, mitogen-activated protein kinase (MAPK) pathway is important in GPIb-IX-dependent activation of platelet integrin alpha(IIb)beta(3). Furthermore, vWF binding to GPIb-IX induces phosphorylation of Thr-202/Tyr-204 of extracellular signal-regulated kinase 2 (ERK2). GPIb-IX-induced ERK2 phosphorylation is inhibited by PKG inhibitors and enhanced by overexpression of recombinant PKG. PKG activators also induce ERK phosphorylation, indicating that activation of MAPK pathway is downstream from PKG. Thus, our data delineate a novel integrin activation pathway in which ligand binding to GPIb-IX activates PKG that stimulates MAPK pathway, leading to integrin activation.  相似文献   

16.
alpha(IIb)beta(3), a platelet-specific integrin, plays a critical role in platelet aggregation. The affinity of alpha(IIb)beta(3) for its ligands such as fibrinogen and von Willebrand factor is tightly regulated in an uncharacterized intracellular process termed inside-out signaling. Calcium integrin-binding protein (CIB) has been identified as a protein interacting with the cytoplasmic tail of the alpha(IIb) subunit of alpha(IIb)beta(3), but its physiological role has not been defined. In the present study, I demonstrate that CIB activates alpha(IIb)beta(3) both in vitro and in vivo. CIB interacts directly with the alpha(IIb) cytoplasmic tail, thereby increasing the affinity of alpha(IIb)beta(3) for fibrinogen in an in vitro fibrinogen-binding assay. The interaction of CIB with the alpha(IIb) cytoplasmic tail is enhanced in a Ca(2+)-dependent manner. A physiological agonist, ADP, stimulates platelets, activating alpha(IIb)beta(3). When the interaction of CIB with the alpha(IIb) cytoplasmic tail is blocked in native platelets by a permeable competing peptide, alpha(IIb)beta(3) activation is not detected even in the presence of ADP. This result indicates that direct interaction of CIB with the alpha(IIb) cytoplasmic tail converts alpha(IIb)beta(3) from a resting to an active conformation. This suggests that CIB plays an important role in one of the pathways that modulate the affinity of alpha(IIb)beta(3) for its ligand.  相似文献   

17.
Phosphoinositide (PI) 3-kinases play an important role in regulating the adhesive function of a variety of cell types through affinity modulation of integrins. Two type I PI 3-kinase isoforms (p110 beta and p110 gamma) have been implicated in G(i)-dependent integrin alpha(IIb)beta(3) regulation in platelets, however, the mechanisms by which they coordinate their signaling function remains unknown. By employing isoform-selective PI 3-kinase inhibitors and knock-out mouse models we have identified a unique mechanism of PI 3-kinase signaling co-operativity in platelets. We demonstrate that p110 beta is primarily responsible for G(i)-dependent phosphatidylinositol 3,4-bisphosphate (PI(3,4)P(2)) production in ADP-stimulated platelets and is linked to the activation of Rap1b and AKT. In contrast, defective integrin alpha(IIb)beta(3) activation in p110 gamma(-/-) platelets was not associated with alterations in the levels of PI(3,4)P(2) or active Rap1b/AKT. Analysis of the effects of active site pharmacological inhibitors confirmed that p110 gamma principally regulated integrin alpha(IIb)beta(3) activation through a non-catalytic signaling mechanism. Inhibition of the kinase function of PI 3-kinases, combined with deletion of p110 gamma, led to a major reduction in integrin alpha(IIb)beta(3) activation, resulting in a profound defect in platelet aggregation, hemostatic plug formation, and arterial thrombosis. These studies demonstrate a kinase-independent signaling function for p110 gamma in platelets. Moreover, they demonstrate that the combined catalytic and non-catalytic signaling function of p110 beta and p110 gamma is critical for P2Y(12)/G(i)-dependent integrin alpha(IIb)beta(3) regulation. These findings have potentially important implications for the rationale design of novel antiplatelet therapies targeting PI 3-kinase signaling pathways.  相似文献   

18.
Although the role of collagen in thrombosis has been extensively investigated, the contribution of other extracellular matrices is still unclear. We have recently reported that laminin stimulates platelet spreading through integrin alpha(6)beta(1)-dependent activation of the collagen receptor glycoprotein (GP) VI under static condition. Under physiological high and low shear conditions, platelets adhered to laminin, and this was strongly inhibited by an antibody that blocks association between GPIb-IX-V and von Willebrand factor (VWF). Moreover, platelets of type III von Willebrand disease or Bernard-Soulier syndrome adhered to laminin at a low shear condition but not at a high shear condition. The specific binding of laminin to VWF was confirmed by surface plasmin resonance spectroscopy (BIAcore). These findings suggest that laminin supports platelet adhesion depending on the interaction of VWF and GPIb-IX-V under pathophysiological high shear flow. This mechanism is similar to that of collagen. We propose that integrins, GPVI, GPIb-IX-V, and VWF represent a general paradigm for the interaction between platelets and subendothelial matrices.  相似文献   

19.
Platelet activation by collagen depends principally on two receptors, alpha(2)beta(1) integrin (GPIa-IIa) and GPVI. During this activation, the nonreceptor protein tyrosine kinase pp72(syk) is rapidly phosphorylated, but the precise contribution of alpha(2)beta(1) integrin and GPVI to signaling for this phosphorylation is not clear. We have recently found that proteolysis of platelet alpha(2)beta(1) integrin by the snake venom metalloproteinase, jararhagin, results in inhibition of collagen-induced platelet aggregation and pp72(syk) phosphorylation. In order to verify whether the treatment of platelets with jararhagin had any effect on GPVI signaling, in this study we stimulated platelets treated with either jararhagin or anti-alpha(2)beta(1) antibody with two GPVI agonists, an antibody to GPVI and convulxin. Platelet shape change and phosphorylation of pp72(syk) by both GPVI agonists was preserved, as was the structure and function of GPVI shown by (125)I-labeled convulxin binding to immunoprecipitated GPVI from jararhagin-treated platelets. In contrast, defective platelet aggregation in response to GPVI agonists occurred in both jararhagin-treated and alpha(2)beta(1)-blocked platelets. This apparent cosignaling role of alpha(2)beta(1) integrin for platelet aggregation suggests the possibility of a topographical association of this integrin with GPVI. We found that both platelet alpha(2)beta(1) integrin and GPVI coimmunoprecipitated with alpha(IIb)beta(3) integrin. Since platelet aggregation requires activation of alpha(IIb)beta(3) integrin, defective aggregation in the absence of alpha(2)beta(1) suggests that this receptor may provide a signaling link between GPVI and alpha(IIb)beta(3). Our study therefore demonstrates that platelet signaling leading to pp72(syk) phosphorylation initiated with GPVI engagement by either convulxin or GPVI antibody does not depend on alpha(2)beta(1) integrin. However, alpha(IIb)beta(3) integrin may, in this model, require functional alpha(2)beta(1) integrin for its activation.  相似文献   

20.
The interaction between surface components on the invading pathogen and host cells such as platelets plays a key role in the regulation of endovascular infections. However, the mechanisms mediating Staphylococcus aureus binding to platelets under shear remain largely unknown. This study was designed to investigate the kinetics and molecular requirements of platelet-S. aureus interactions in bulk suspensions subjected to a uniform shear field. Hydrodynamic shear-induced collisions augment platelet-S. aureus binding, which is further potentiated by platelet activation with stromal derived factor-1beta. Peak adhesion efficiency occurs at low shear (100 s(-1)) and decreases with increasing shear. The molecular interaction of platelet alpha(IIb)beta(3) with bacterial clumping factor A through fibrinogen bridging is necessary for stable bacterial binding to activated platelets under shear. Although this pathway is sufficient at low shear (相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号