首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
大关杨的输导韧皮部限于当年新生的次生韧皮部。4月中旬至5月中旬大量出现,7月底停止发育。其成熟筛分子中具一细胞核,以后才消失。前一个生长季产生的筛管变形,故二个生长季的韧皮部蛤限明显。韧皮纤维出现迟,呈切向束状分布。含晶细胞分布于纤维束两侧。木栓形成层5月中旬开始活动,7月进入发育高峰。  相似文献   

2.
The secondary phloem of 6 species of woody dicotyledons was examined for the occurrence of callose on the sieve plates of active sieve elements. Fluorescence and bright-field staining methods were used to detect callose. Tissue from the 6 species was killed and fixed in each of 5 solutions. Some tissue of each species was submerged in the killing solutions as quickly as possible, the remainder within 15 min after removal from the tree. In each species, some active sieve elements of the quick-killed tissue gave negative callose reactions. All active sieve elements of the delay-killed tissue gave positive callose reactions. These and other results suggest that the active sieve elements in the secondary phloem of the species studied normally lack callose and that the extent of callose deposition in these cells depended primarily upon the rapidity with which the sieve-element protoplasts were killed after wounding of the phloem. In addition, bright-field observations of sieve plates of large numbers of sieve elements from a seasonal collection of Tilia americana secondary phloem suggest that the active sieve elements normally lack callose during the growing season and that the inactive sieve elements normally possess it (dormancy callose).  相似文献   

3.
The cambial activity and periodicity of secondary xylem and phloem formation have been less studied in tropical tree species than in temperate ones. This paper describes the relationship between seasonal cambial activity, xylem and phloem development, and phenology in Schizolobium parahyba, a fast growing semideciduous seasonal forest tree from southeastern Brazil. From 2002 to 2003, wood samples were collected periodically and phenology and climate were recorded monthly in the same period. S. parahyba forms annual growth increments in wood, delimited by narrow initial parenchyma bands. The reduction of the cambial activity to a minimum correlates to the dry season and leaf fall. The higher cambial activity correlates to the wet season and the presence of mature leaves. In phloem, a larger conductive region was observed in the wet season, when the trees were in full foliage. The secondary phloem did not exhibit any incremental zone marker; however, we found that the axial parenchyma tends to form irregular bands.  相似文献   

4.
ROGERS  S. 《Annals of botany》1981,47(5):603-610
Radial growth in five Terminalia ivorensis trees has been recordedfrom dendrometer reading for a period of 12 months. The durationof the growing season was 7–9 months. Variation in annualradial increment between individual trees was observed to bedue both to differences in the length of the growing seasonand the rate of growth during that period. Seasonal changesin the diameter of sieve elements, and the extent of callosedeposition on the sieve plates have also been investigated.Sieve element diameters were smallest in the dry season, possiblybecause of shrinkage. The width of phloem tissue showing definitivecallose was fairly constant throughout the year, but the zonewith open pores on the sieve plates changed, being widest inSeptember, and narrowest in March when the trees were almostbare. There were two peaks of cambial activity, indicated byan increase in width of the ‘open pore zone’, onein April at the time of bud break, and a second in September. The sugar concentration of the phloem exudate obtained fromsmall cuts into the bark of the trees varied throughout theyear. Concentrations were highest in March, during the dry season,and lowest in May, when the young leaves were expanding. Terminalia ivorensis A. Chev., tropical timber tree, radial growth, callose, phloem exudate, phloem activity  相似文献   

5.
During winter, the phloem of the diffuse-porous tree magnolia (Magnolia kobus DC.) is dormant and is characterized by heavy deposits of dormancy callose. Application of 1-naphthaleneacetic acid (NAA) to either the top or the lower ends of excised dormant branches before bud break resulted in the removal of the dormancy callose from the sieve tubes. In both intact and auxintreated branches, callose degradation occurred first in the recently formed sieve tubes. There was no new vessel differentiation in magnolia before bud break. In contrast, the sieve tubes of the ring-porous oak (Quercus robur L.), which possess massive dormancy callose deposits during winter, were almost callose-free just before bud break. Application of auxin to the top of excised branches before bud break resulted in callose accumulation on the most recently formed sieve tubes. The first earlywood vessels were evident in oak before bud break, and their numbers were increased by auxin application. The early development of phloem and xylem (before bud break) in ring-porous species is an ecological adaptation which prepares the vascular system of these trees to function immediately at the beginning of their growing season which is relatively short.  相似文献   

6.
Secondary phloem production in four deciduous (Albizzia lebbeck,Dalbergia sissoo, Tectona grandis and Terminalia crenulata)and three evergreen plants (Calophyllum inophyllum, Mangiferaindica and Morinda tinctoria) is briefly described. The totalduration of phloem production for each year was worked out forall these plants. In three of the four deciduous trees therewere two instalments of phloem production in correspondencewith the presence of two flushes of cambial activity while inTectona grandis and in all the three evergreen trees there wasonly one instalment. The time of initiation and cessation ofphloem tissue production was found to be variable in the differentplants studied. Periodicity in the production of different componentsof phloem tissue as well as the difference in the dimensionsof the different phloic elements produced during each flushof cambial activity resulted in detectable growth increments(or ‘rings’) within the phloem. There was a distinctshortening of the different phloem elements during the approachof dormancy/least activity. Conspicuous changes were found inthe ergastic contents of phloem parenchyma and ray cells adjacentto the cambial zone during the initiation of cambial activityand during the approach of dormancy/least activity. Seasonal growth, secondary phloem, deciduous and evergreen trees, cambial activity  相似文献   

7.
Functional sieve elements are present year-round in the secondary phloem of the trunk of Acer negundo L., the box elder tree. Judging from numerous collections made between May, 1962, and May, 1964, the seasonal cycle of phloem development is as follows: cambial activity and new phloem differentiation begin in late March or early April; xylem differentiation begins about a month later and is completed in most trees in late August. At the time of cessation of cambial activity most of the relatively wide sieve elements of the current season's increment are mature. However, numerous groups of narrow, immature sieve elements and companion cells located on the outer margin of the cambial zone do not reach maturity until fall and winter. By the time of cambial reactivation in spring, most, if not all, of these narrow elements are mature. Some of the sieve elements which reach maturity either shortly after cessation of cambial activity or during dormancy become non-functional within 6 weeks after resumption of cambial activity in spring, while others remain functional until mid-August. For the phloem increment of a given year, cessation of function begins in September with the accumulation of definitive callose on the sieve plates of the first-formed sieve elements and spreads to all but the last-formed ones by the end of December.  相似文献   

8.
Secondary phloem anatomy of several species of Cycadeoidea is described from trunks in the Wieland Collection, Peabody Museum of Natural History. The trunks were collected from the Lakota Formation, Lower Cretaceous, Black Hills of South Dakota. Secondary phloem is extensively developed and consists of alternating, tangential bands of fibers and sieve elements, with rare phloem parenchyma. Uniseriate rays, 2-22 cells high, occur between every one to three files of the axial system. Fibers are long, more than 1200 μm, approximately 26.6-34.2 μm in diameter, and have slit-like apertures on the lateral walls. Sieve elements range from 16-25 μm in diameter and are up to 500 μm long. Elliptical sieve areas appear on both end and radial walls and measure 10 μm across; minute spots, which may represent sieve pores, are present within the sieve areas. Secondary phloem of North American Cycadeoidea is similar in organization (alternating tangential bands) and cell types (sieve cells, fibers, axial parenchyma) to that known in other extant and fossil cycadophytes and some seed ferns. The unusual pattern of cell types and thickness of secondary phloem is discussed in the context of plant habit, phloem efficiency, and potential phylogenetic importance.  相似文献   

9.
BARNETT  J. R. 《Annals of botany》1992,70(2):169-177
Changes taking place during cambial reactivation in Aesculushippocastanum have been studied using transmission electronmicroscopy. Cytoplasmic activity in the form of vesicle productionby dictyosomes and endoplasmic reticulum, and coated vesicleformation at the plasmalemma, was observed in samples collectedin mid-Feb. The first cell divisions occurred 1 month later,in cells to the phloem side of the cambium, and were of twotypes: penclinal divisions producing new phloem precursors,and oblique anticlinal divisions in phloem mother cells formedat the end of the previous growing season producing putativecompanion cell/sieve element pairs. The fusiform initial wasidentified as the cell adjacent to the boundary-layer of parenchymacells and was the last cell to divide, 2 weeks after the firstdivisions in phloem precursors. For the next 4 weeks phloemcells only were produced The first new differentiating xylemelements were formed in the middle of Apr., following a surgein the rate of cell division by the initial aRd its derivativexylem mother cells. These were a mixture of developing fibresand vessel elements. Some of the boundary-layer cells were converteddirectly to vessel elements without any division taking place,while others were derived from daughter cells of the fusiforminitial produced following its reactivation. Aesculus hippocastanum L., cambium, dormancy, reactivation  相似文献   

10.
A anatomical characters of secondary phloem in Glyptostrobus pensilis (Staunt.)Koch were observed by means of both light and scanning electron microscopy(SEM). The secondary phloem is composed of axial and radial systems. In the axial systems, the phloem consists of sieve cells, phloem parenchyma cells, albuminous cell and phloem fibers. In the radial systems, it consists of phloem rays. The alternate arrangement of different cells in cross section results in tangential bands. The sequence of radial arrangement follows the pattern of sieve cells, phloem parenchyma cells, sieve cells and phloem fibers, sieve cells. Many crystals of calbium oxalate are embedded in the radial walls of seive cells. The phloem fibers are of only one type. The phloem rays are homogeneous, uniseriate. According to the anatomical characters of secondary phloem of Glyptostrobus pensilis (Staunt.)Koch and comparison with the other genera of Taxodiaceae, Glyptostrobus, Metasequoia and Taxodium have close relationships.  相似文献   

11.
In a light microscope study of the secondary phloem in Gmelinaarborea (Verbenaceae) many sieve elements were found to possessbar-shaped cytoplasmic inclusions of proteinaceous nature Itis suggested that these inclusions represent a type of crystallineP-protein not reported in the family Verbenaceae before Crystalline P-protein, phloem, sieve element inclusion  相似文献   

12.
水松的次生韧皮部解剖及其系统位置的讨论   总被引:3,自引:0,他引:3  
在光学显微镜和扫描电子显微镜下观察,水松茎次生韧皮部的主要特征为:韧皮部由轴向系统和径向系统组成。轴向系统由筛胞、韧皮薄壁组织细胞、蛋白细胞和韧皮纤维组成,径向系统由韧皮射线组成。在横切面上,轴向系统的各组成分子以单层切向带交替有规律的排列,其排列顺序为:筛胞-韧皮薄壁组织细胞-韧皮纤维-筛胞。筛胞的径向壁上嵌埋有草酸钙结晶,韧皮纤维仅一种类型,韧皮射线同型、单列。根据水松茎次生韧皮部的解剖研究,并与杉科其它各属的有关资料进行比较,我们认为:水松属与水杉属和落羽杉属有较近的亲缘关系。  相似文献   

13.
本文研究和比较了杨柳科2属7种植物次生韧皮部解剖结构。结果表明:(1)杨属和柳属植物在次生初皮部解剖上有某些共同特征:次生韧皮部具有明显分层现象;韧皮纤维和含晶细胞与筛管分子、伴胞和韧皮薄壁组织细胞是切向带相间排列;筛管分子均为复筛板,端壁倾斜平均含有7-8个筛域。(2)两属植物在射线和晶体类型上有明显区别:柳属植物次生韧皮部无石细胞;杨属植物不具功能韧皮部中含有石细胞。(3)两属植物均有一些较为原始的韧皮部解剖特征。  相似文献   

14.
The cambium in black locust consists of several layers of cells at all times. Cambial reactivation (division) is preceded by a decrease in density of cambial cell protoplasts and cell wall thickening but not by cell enlargement. During the resumption of cambial activity, periclinal divisions occur throughout the cambial zone. Early divisions contribute largely to the phloem side. The period of greatest cambial activity coincides with early wood formation. Judged by numerous collections made during two seasons (October, 1960-October, 1962) the seasonal cycle of phloem development is as follows. Phloem differentiation begins in early April, ends in late September. The amount of phloem produced is quite variable (range: 1-10 bands of sieve elements per year). Cessation of function begins with the accumulation of definitive callose in the first-formed sieve elements and spreads to those more recently formed. By late November all but the last-formed sieve elements are collapsed. All sieve elements are collapsed by mid-winter and before the resumption of new phloem production in spring. Phloem differentiation precedes xylem differentiation by at least 1 week, and apparently functional sieve elements are present 3 weeks before new functional vessel elements. Xylem and phloem production ends simultaneously in most trees.  相似文献   

15.
Ultrastructures of sieve elements of secondary phloem of 1–2 year old branchlet of tropical deciduous tree Dalbegia odorifera T. Chen growing on Hainan Island were studied under transmission electron microscope and a comparation was made between the sieve elements in leaf-bearing and leaf-absent period. During the leaf-bearing period, there was a tailed spindleshaped P-protein body in each mature sieve element. The main part of the P-protein body con sisted of a disordered fine fiber mass with two crystalline tails. The sieve elements had horizontal end walls with simple sieve plate. The inner layers of the wall near the sieve plate appeared intumescent, protruding into the sieve element lumen. During the leaf-absent period, a functional phloem remained about the same thickness as that during the leaf-bearing period. The sieve elements in the leaf-absent period contained normal protoplasts and the P-protein and the sieve plate pores had the same structures as those during the leaf-bearing period. More starch grains and vesicles were found in sieve elements in the leaf-absent period.  相似文献   

16.
Chaffey N  Barlow P  Barnett J 《Planta》2000,210(6):890-896
The cortical microfilament (MF) component of the cytoskeleton within axial elements of the secondary vascular system of the angiosperm tree, Aesculus hippocastanum L. (horse-chestnut) was studied using transmission electron microscopy of ultrathin sections and indirect immunofluorescence microscopy of actin in thick sections. As seen by electron microscopy, MF bundles have a net axial orientation within fusiform cambial cells and their secondary vascular derivatives (i.e. in the axial xylem and phloem parenchyma, xylem fibres, vessel and sieve elements, and companion cells). Immunofluorescence studies, however, reveal that this axial orientation can be more accurately described as a helix of extremely high pitch; it is a persistent feature of all axial secondary vascular elements during their development. Helical MF arrays are the only arrangement seen in secondary phloem cells. However, in addition to helices, other MF arrays are seen in secondary xylem cells. For example, fibres possess ellipses of MFs associated with simple-pit formation, and vessel elements possess circular arrays of MFs that associate with the developing inter-vessel bordered pits, ray–vessel contact pits, and with the perforation plate. Linear MF arrays are seen co-oriented with the developing tertiary wall-thickenings in vessel elements. The possible roles of MFs during the cytodifferentiation of secondary vascular cells is discussed, and compared with that of microtubules. Received: 7 June 1999 / Accepted: 23 December 1999  相似文献   

17.
At an early stage of secondary development, the metaphloem sieveelements appeared to be the only functional axial transportconduit in fully elongated stems of P. vulgaris plants. Thereis no apparent barrier to the radial transfer of solutes inthe stem apoplast. However, radial transfer through the stemsymplast could be limited by discontinuities resulting fromprotoplast degeneration of the protophloem fibres and developingsecondary xylem fibres. Estimates of possible sucrose fluxesthrough the apoplastic and symplastic routes indicated thatradial photosynthate transfer from the sieve element-companioncell (se-cc) complexes of the stem metaphloem could follow eithercellular route. In the case of apoplastic transfer, the plasmamembrane surface area of the se-cc complexes is only sufficientto support some form of facilitated movement of sucrose. Incontrast, the plasma membrane surface area of the phloem parenchymais sufficient to permit passive diffusion of sucrose to theapoplast. Plasmodesmatal frequencies suggest that any symplastictransfer to the phloem parenchyma from the sieve elements wouldbe via the companion cells. Phaseolus vulgaris, french bean, stem, photosynthate, radial transfer (photosynthates), cellular pathway  相似文献   

18.
SHAH  J. J.; JAMES  M. R. 《Annals of botany》1969,33(1):185-189
The phloem of very young petioles of Nelumbo nucifera Gaertn.(Nelumbium speciosum Willd.) was studied with the light microscope.The elongated, mature sieve elements contain slime, plugs, strands,and numerous plastids. Some sieve elements remain nucleatedfor a brief period even after the sieve plates are well developed.The companion cells numbering 8–14 undergo disintegrationbefore the elongation of the ontogenetically related sieve elementis completed. They are uninucleate to begin with but later becomebinucleate and finally degenerate and obliterate. The variousstages in their ontogeny and disintegration are described. Ofthe very few specialized phloem parenchyma cells present, someare associated with sieve elements. They have slime body-likestructures, and plastid-like bodies which group together andeventually disintegrate.  相似文献   

19.
SHAH  J. J.; JACOB  RAJU 《Annals of botany》1969,33(5):855-863
Light microscopic studies of the petioles of Lagenaria sicerariareveal that the external phloem of each bicollateral vascularbundle develops earlier than the internal phloem, and that thesieve elements of the external phloem are arranged in the outerand inner zones. Each sieve element of L. siceraria and Momordicacharantia is vertically associated with a maximum of six andtwo companion cells respectively. Discrete granular bodies seenin the cytoplasm of young sieve elements develop into globular,oval, or elongated slime bodies. Enlargement and fusion of slimebodies, and the subsequent dispersal of slime occur in the parietalcytoplasm. The dispersal of slime coincides with degradationof the nucleus and perforation of the pore sites. Before nucleardisorganization, the sieve-element nucleolus is extruded. Slimeafter its immediate dispersal appears amorphous and uniformlydistributed in the sieve elements. Plugs exhibit varying degreesof condensation of slime near the sieve plates. Certain maturesieve elements in the external phloem of L. siceraria have ovalbodies which we consider reaggregated or undispersed slime.Evidence has been obtained that a central cavity occurs in afew, almost mature, sieve elements wherein the cytoplasm includingthe slime is peripheral.  相似文献   

20.
ESAU  KATHERINE 《Annals of botany》1976,40(3):637-644
The hyperplastic growth induced in the phloem tissue by infectionwith the curly top virus was studied in minor veins of leavesof spinach, Spinacia oleracea L., by the use of the electronmicroscope. Proliferation of cells occurs in the phloem andin the parenchyma bordering the phloem. The arrangement of cellsis less orderly when hyperplasia occurs in older than in youngertissue but in both instances the majority of cells differentiateinto sieve elements. As in normal phloem, sieve element plastidshaving a ring of proteinaceous fibrils are a consistent featurein the hyperplastic phloem. Depending on the kind of cell inwhich hyperplasia is initiated, the plastids may originate fromyoung plastids similar to those in normal sieve elements orfrom more or less completely differentiated chloroplasts. Theprotoplasts of the hyperplastic sieve elements, including theplastids, degenerate during differentiation or after maturation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号