首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary The fine structure of the secretory tubules in the kidney of the aglomerular goose-fish (Lophius piscatorius) is described. The cells have a pyramidal shape, are joined together by multiple desmosomes, and share as main characteristics: abundant and deep inflections of the basal and lateral cell membranes; coated luminal plasma membranes forming multiple microvilli or a genuine brush border; moderate numbers of comparatively small mitochondria, usually unassociated with the basal and lateral plasma membrane specializations; numerous multivesicular bodies occuring in the apical cytoplasm; abundant large lysosome-like bodies in the intermediate regions of the cytoplasm; and comparatively poor development of endoplasmic reticulum and Golgi apparatus.The observations suggest that the cells perform both absorptive and secretory functions and are metabolically unusually active in autolytic and heterolytic work. Comparisons with other aglomerular species indicate that the ability for active secretory function is not necessarily dependent on a close association between plasma membrane and mitochondria; however, this ability does appear to require a markedly increased basal and/or lateral cell surface created by multiple invaginations of the plasma membrane. The abundance of desmosomes and associated structures appears to represent a unique structural specialization of the goosefish tubule, and indicates that the cells must be firmly anchored to one another to supply a rigid and mechanically continuous lining of the tubule. The multivesicular bodies probably represent endocytic vacuoles which fuse with apical vesicles and invaginate their outer membrane to form the internal vesicles; they appear to transform to ambilysosomes via a function as heterophagosomes and — later — combined hetero- and autophagosomes.Supported by grants from Karolinska Institutet, Fonden til Videnskabens Fremme and Konsul Johannes Fogh-Nielsen og fru Ella Fogh-Nielsens Légat. Part of the study was performed at the Zoological Station at Naples, Italy. The assistance of Mrs. Britt-Marie Karlsson is gratefully acknowledged.  相似文献   

2.
The nonciliated cells lining the ductuli efferentes presented three distinct cytoplasmic regions. The apical region contained, in addition to cisternae of endoplasmic reticulum and mitochondria, two distinct membranous elements. The tubulovesicular system consisted of dilated tubules connected to the apical plasma membrane and subjacent distended vesicular profiles. The apical tubules, not connected to the cell surface, consisted of numerous densely stained tubules of small size which contain a compact, finely granulated material. The supranuclear region, in addition to a Golgi apparatus and ER cisternae, contained dilated vacuoles, pale and dense multivesicular bodies, as well as numerous dense granules identified cytochemically as lysosomes. The basal region contained the nucleus and many lipid droplets. The endocytic activity of these cells was investigated using cationic ferritin (CF) and concanavalin-A-ferritin (Con-A-ferritin) as markers of adsorptive endocytosis; and native ferritin (NF), concanavalin-A-ferritin in the presence of alpha-methyl mannoside, and horseradish peroxidase or albumin bound to colloidal gold for demonstrating fluid-phase endocytosis. These tracers were injected separately into the rete testis, and animals were sacrificed at various time intervals after injection. At 1 min, CF or Con-A-ferritin were seen bound to the apical plasma membrane, to the membrane of microvilli, and to the membrane delimiting elements of the tubulovesicular system. Between 2 and 5 min, these tracers accumulated in the densely stained apical tubules and at 15 min in the dilated vacuoles. Between 30 min and 1 hr, the tracers appeared in multivesicular bodies of progressively increasing density, whereas at 2 hr and later time intervals, many dense lysosomal elements became labeled. The tracers for fluid-phase endocytosis showed a distribution similar to that for CF or Con-A-ferritin except that they did not bind to the apical plasma membrane, microvilli, or membrane delimiting the tubulovesicular system. At no time interval were any of the tracers observed in the abluminal spaces. Thus, the nonciliated epithelial cells of the ductuli efferentes are actively involved in fluid-phase and adsorptive endocytosis, both of which result in the sequestration of endocytosed material within the lysosomal apparatus of the cell.  相似文献   

3.
Summary Unique and highly ordered structures were discovered in the so-called apical tubules of several absorbing epithelia (kidney proximal tubule, visceral yolk sac and ductuli efferentes) fixed in situ with a mixture of formaldehyde, glutaraldehyde and osmium tetroxide. The apical tubules were especially numerous in the apical cytoplasm, in addition to the invaginations of the apical plasma membrane, newly formed endocytic vesicles and large endocytic vacuoles. They showed a cylindrical structure (80 nm in diameter) limited by a smooth membrane. Helically wound parallel rows of particles (11 nm in diameter) were found in the apical tubules in close proximity to their limiting membrane. The structure of the helix was determined by following the rows through serial sections and semithin sections, and was found to be a left-handed quadruple helix. These particles surround an electron-lucent cylinder (35 nm in diameter), containing at its center a single row of particles (9 nm in diameter). The apical tubules with the luminal specializations were not seen in continuity with the apical plasma membrane, but were frequently connected with the large endocytic vacuoles, which were present in the deeper levels of the apical cytoplasm. From these observations, it is suggested that the apical tubules are not derivatives of the apical plasma membrane; rather, they represent an intracellular compartment, which is morphologically related to the large endocytic vacuoles.  相似文献   

4.
The corpora allata exbibit cycles of synchronous cell growth and atrophy during ovarian cycles in adult females of the cockroach Diploptera punctata. In the present report, the process of synchronous autophagy of organelles which results in cellular atrophy was investigated. In general, unwanted organelles were sequentially sequestered by several different mechanisms and then targeted for destruction. Autophagy was initiated on day 4 when corpus allatum cells were largest and most actively synthesizing juvenile hormone. The first sign of the initiation of autophagy was aggregation of ribosomes in an isolation membrane. By day 5, many organelles were isolated in the autophagic vacuoles. The ribosomecontaining vacuoles were wrapped by flattened stacks of Golgi cisternae to form conspicuous whorl-like autophagosomes. This is a previously undescribed type of autophagic vacuole with the entire complex of Golgi cisternae forming part of the autophagic membranes. Smooth endoplasmic reticulum was wrapped into membranous autophagic vacuoles with concentric arrays of doubel membranes. Plasma membrane was invaginated and then isolated in a multivesicular body. These three different types of isolated vacuoles did not show acid phosphatase activity as indicated by histochemical staining with -glycerophosphate as substrate. Subsequently, these autophagosomes fused with each other and with 1° or 2° lysosomes to form giant autophagolysosomes. Some mitochondria appeared to have coalesced directly into autophagolysosomes. Golgi complexes were evident during this period; they actively participated in making lysosomal enzymes. Cytoskeletons were frequently observed in the vicinity of autophagic vacuoles and were presumably involved in the transport of the vacuoles. As a result of lysosomal degradation lipofuscins and dense bodies were frequently observed by days 9–12 indicating atrophy of corpus allatum cells. Structural parameters, especially those present early in autophagy, such as the isolation membrane, ribosome-containing vacuoles and whorl-like autophagosomes, can be used to search for potential growth regulators responsible for the induction of autophagy, of the corpora allata, and the subsequent termination in juvenile hormone synthesis.  相似文献   

5.
Zusammenfassung Im Laufe der Cytoplasmareduktion während der Spermiogenese von Eisenia foetida sind zwei Vorgänge zu unterscheiden: 1. Die Bildung autophagischer Vakuolen. Sie entstehen, indem Teile des Grundcytoplasmas in das Kompartiment des ER verlagert werden. Da sie keine Reaktion auf saure Phosphatase geben, sind sie als nicht lysosomale Anfangstadien der zellulären Autophagie zu betrachten. 2. Die Bildung primärer Lysosomen. Sie entstehen in Form von lytische Enzyme enthaltenden Golgivesikeln, die von einer neu im Cytoplasma entstehenden Membran zu größeren Einheiten zusammengefaßt werden: den multivesicular bodies. Autophagische Vakuolen und multivesicular bodies gelangen ins Cytophor das am Ende der Spermiogenese den Charakter eines ausgedehnten Autophagosoms annimmt. Als Struktureigentümlichkeit entstehen in ihm undulierende Tubulikörper. Der coat an den Hüllmembranen junger multivesicular bodies und am Plasmalemm der Spermatidenverbindung zum Cytophor wird in Zusammenhang mit der Membrandifferenzierung diskutiert.
Ultrastructural equivalents of cellular autophagyElectronmicroscopical observations on spermatids of Eisenia foetida during the cytoplasmic reduction
Summary During the cytoplasmic reduction phase in the spermiogenesis of Eisenia foetida two different processes may be defined: 1. The formation of autophagic vacuoles, which arise by the displacement of cytoplasmic portions into the cisternae of the endoplasmic reticulum. Since they exhibit no acid phosphatase activity they are considered to be early stages in cellular autophagy. 2. The formation of primary lysosomes. They originate in Golgi vesicles and are then enveloped by a membrane, formed in the cytoplasm de novo, which transforms them into multivesicular bodies. Autophagic vacuoles and multivesicular bodies subsequently transfer to the cytophor, which contains at the end of the spermiogenesis the characteristics of a large autophagosom, showing aggregates of undulating tubules. The outer coat of the limiting membranes in the early multivesicular bodies and of the cell membrane of the connecting piece between spermatid and cytophor appear to be associated with the membrane development.
  相似文献   

6.
Summary Cytoplasmic vacuoles and bodies in the osteoclast (rat) were studied by electron microscopy. The vacuole-like structures (0.03–5 in diameter) may be classed as a) vacuoles b) coated vacuoles and c) invaginations. The cytoplasmic bodies vary in size from 0.02–3 in diameter and these may similarly be classed as a) light cytoplasmic bodies, b) dense cytoplasmic bodies, c) coated cytoplasmic bodies and d) cytoplasmic bodies containing inclusions. Both the cytoplasmic vacuoles and the bodies are limited by a triple layered membrane of about 91 Å in thickness. Their relationship to the lysosomal system and the role of this system in the osteoclast is discussed.This research was supported by the Danish Research Council. Grant no. 512–727 and 512–819.  相似文献   

7.
SYNOPSIS. Macrogametocytes of the coccidium Adelina tribolii Bhatia, 1937 are described from the time when they settle in the fat body of the host and form periparasitic vacuoles around them to the stage of microgametocyte occurrence and the beginning of syzygy formation.
The macrogametocyte is surrounded by a 2-layered pellicle 50 mμ thick. Its continuity is interrupted by one or several micropores 40 mμ across and 86 mμ deep.
The cytoplasm of the parasite contains numerous vesicles and lamellae of rough and smooth endoplasmic reticulum. Mitochondria of various sizes have short tubules. The macrogametocyte contains a variable number of dark bodies 1.4-2.4 μ in diameter. It also contains several vacuoles up to 1.2 μ which are covered with a 3-layered membrane and enclose a granular material.
In old macrogametocytes in syzygy multivesicular bodies develop which measure up to 2.4 by 1.6 μ. Several smaller vacuoles containing granular material are also a constituent of the electrondense basic substance of these corpuscles.
Paraglycogen granules 1.4 by 0.9 A occur in old macrogametocytes and are situated inside the vacuoles which are not bordered by a membrane. The numbers and size of these granules increase with the age of the parasite. The Golgi complex lies close to the nucleus.
The nucleus, 6-8.5 μ in diameter, is in the center of the macrogametocyte and contains a large eccentric nucleolus. The nuclear membrane is 2-layered and has many pores.  相似文献   

8.
Summary Photoreceptor membrane breakdown at dawn in the posterior median eyes of the spider Dinopis is described. Coated and smooth vesicles are shed into the receptor cytoplasm and are assembled into multivesicular bodies of two kinds: (i) Coated vesicles form loosely-assembled multivesicular bodies (mvbs) whose bounding membranes are derived from endoplasmic reticulum. (ii) Smooth vesicles generated by the mass disintegration of membrane aggregate to yield tightly-assembled multivesicular bodies which are not membrane-bound. Both types are either lysed in the inter-rhabdomeral cytoplasm, or degrade via multi-lamellar bodies to residual bodies (rbs) while they are being transported to the intermediate segments. Two systems are associated with lysis. Nebenkerne produced by the rapid differentiation of GERL in the intermediate segments fuse with membrane-bound mvbs or rbs and may inject them with hydrolases. Partially-differentiated rigid tubules (Blest et al., 1978) travel to the receptive segments together with RER from the intermediate segments and also fuse with or engulf mvbs. Both systems may contain pro-enzymes which are activated at their target sites. No evidence of a close or necessary geometrical relationship between GERL and Golgi bodies has been seen, and there is no clear demarcation between RER, smooth ER and GERL which is entering into continuity with or engulfing mvbs. The implications of these findings for hypotheses about the origins of isolation membranes and autolytic systems in invertebrate systems are briefly discussed.The authors thank Professor D.T. Anderson, F.R.S., for our use of field facilities at the Crommelin Biological Field Station of Sydney University at Warrah, Pearl Beach, N.S.W., Andrew & Sally Austin and Sally Stowe for help in the field, and Joanne Maples for technical assistance. Professor T.H. Waterman and Dr. V.B. Meyer-Rochow kindly gave us access to certain of their results prior to publication. We are indebted to Rod Whitty and the Electron Microscopy Unit for advice and support throughout these studies  相似文献   

9.
Summary Specific membrane differentiation occurs in the cytoplasmic-tubule system of the absorptive cells lining the mucosa of the lamprey anterior intestine. The absorptive cells are characterized by the presence of abundant mitochondria and a system of well-developed cytoplasmic tubules (120 nm in diameter). The cytoplasmic tubules open on to the basolateral cell surface and contain numerous lipoprotein particles (50–100 nm diam.) in their lumina. Lipoprotein particles are also observed in the endoplasmic reticulum and the Golgi complex, and they are transfered to the lateral intercellular space and lamina propria by way of the cytoplasmic tubules. Spirally-wound parallel rows of particles are found in the luminal surface of the cytoplasmic tubules. The rows are 17 nm apart and are wound spirally at a pitch of 210 nm. Freeze-fracture images of the tubule membranes also show spiral arrays of particles (9 nm in diameter) on the P-face, and complementary shallow grooves on the E-face. From these observations, it is suggested that the cytoplasmic-tubule system of the intestinal absorptive cells serves as a channel for the transport of synthesized lipoprotein into the interstitium, and is also the site of the ion and water exchange essential for the maintenance of ionic homeostasis.  相似文献   

10.
Summary The endodermal trophotaenial epithelium in goodeid embryos acts as a placental exchange site. Fine structural and cytochemical data indicate that the trophotaenial absorptive cells are endocytotically highly active. To test their micropinocytotic capacity and characterize the cellular mechanisms involved in membrane, solute and ligand movements, living embryos of Xenoophorus captivus were incubated in saline media containing horseradish peroxidase (HRP) and/or cationized ferritin (CF) in vitro, and the uptake of these tracer proteins examined by both time sequence analysis and pulse-chase procedures. In some embryos, the effects of prolonged exposure to CF injected into the ovarian cavity, was also investigated.Labelling of the free cell surface was detectable with CF only, but interiorization of both probes was quick from all incubation media. Adsorptive pinocytosis of CF and fluid-phase uptake of HRP sequentially labelled pinocytic vesicles, endosomes, and lysosome-like bodies. In addition, CF-molecules were sequestered within apical tubules and small vesicles. HRP was largely excluded from both organelles and ended up in the lysosomal compartment. For CF, two alternative pathways were indicated by the pulse-chase experiments; transcellular passage and regurgitation of tracer molecules to the apical cell surface. The latter procedure involves membrane and receptor recycling, in which apical tubules are thought to mediate.In double-tracer experiments, using an 81 excess of HRP, external labelling with CF was light or lacking after 1–3 min, and the initial uptake-phase produced pinocytic vesicles and endosomes that mainly contained HRP-reaction product. Prolonged incubation, however, resulted in densely CF-labelled plasmalemmal invaginations and pinocytic vesicles that predominantly carried ferritin granules. After 60 min, the vacuoles of the endosomal compartment contained either high concentrations of HRP-reaction product, both tracers side by side, or virtually exclusively CF.  相似文献   

11.
The three-dimensional architecture of the tubular endocytic apparatus and the endoplasmic reticulum in the rat yolk-sac endoderm was investigated after loading with horseradish peroxidase-conjugated concanavalin A by intrauterine administration. After 30 min, small vesicles (50–150 nm in diameter), small tubules (80–100 nm in diameter) and large vacuoles (0.2–1.0 m in diameter) in the apical cytoplasm were labeled with the tracer, but lysosomes (1.0–3.5 m in diameter) in the supranuclear cytoplasm were not labeled until 60 min after loading. Stereo-viewing of the labeled small tubules in thick sections revealed that they were not isolated structures but formed three-dimensional anastomosing networks, which were also confirmed by scanning electron microscopy after maceration with diluted osmium tetroxide. Their earlier labeling with the endocytic tracer, localization in the apical cytoplasm and three-dimensional network formation indicated that the labeled small tubules represented tubular endosomes (tubular endocytic apparatus). These well-developed membranous networks provided by the tubular endosomes are suggested to facilitate the receptor-mediated endocytosis and transcytosis of the maternal immunoglobulin in the rat yolk-sac endoderm. Scanning electron microscopy further revealed lace-like networks of the smooth endoplasmic reticulum near the lateral plasma membrane. Their possible involvement in transport of small molecules or electrolytes is discussed.  相似文献   

12.
H. C. Hoch  R. J. Howard 《Protoplasma》1980,103(3):281-297
Summary The ultrastructure of freeze-substituted (FS) hyphae ofLaetisaria arvalis is described and compared to that of similar hyphae preserved by conventional chemical fixation (CF). The outline of membrane-bound organelles as well as the plasma membrane was smooth in FS cells. In contrast, hyphae preserved by CF exhibited membrane profiles that were extremely irregular. Centers of presumed Golgi activity were best preserved by FS. Microvesicles, 27–45 nm diameter and hexagonal in transverse section, were observed most readily in FS cells. Filasomes (= microvesicles within a filamentous matrix) were only observed in FS cells. Apical vesicles, 70–120 nm diameter, associated with the centers of Golgi activity and within the Spitzenkörper region exhibited finely granular matrices in FS hyphae, whereas in CF hyphae the contents were coarsely fibrous and less electron-dense. Microvesicles were present at hyphal apices and regions of septa formation. Filasomes were also found at regions of septa formation as well as along lateral hyphal tip cell walls. Microvesicles, but not filasomes, were observed in membrane-bound vesicles (= multivesicular bodies) and in larger vacuoles. Filaments, 5.2–5.4 nm wide, were juxtaposed with centripetally developing septa. Cytoplasmic inclusions, 20–40 m in length, composed of bundles of 6.7–8.0 nm wide filaments were observed in both FS and CF hyphae.  相似文献   

13.
Summary The hyphal tip ofSclerotium rolfsii was examined after fixation by freeze substitution. The Spitzenkörper consisted of a dense mass of apical vesicles and microvesicles surrounding a vesicle-free zone. Linear arrangements of microvesicles were occasionally observed within the Spitzenkörper. Abundant microfilaments were seen within the Spitzenkörper region, often in close association with apical vesicles and microvesicles. Microtubules passed through the Spitzenkörper and terminated at the plasmalemma at the extreme hyphal apex. Filasomes were mostly observed within the apical region and were in close proximity to the plasmalemma. Rough ER, mitochondria, microtubules, and vacuoles were abundant in the subapical region and were usually oriented parallel to the long axis of the hypha. Ribosomes were aligned on the outer surfaces of mitochondria. Golgi body equivalents were observed throughout the subapical region and appeared as inflated cisternae of varying shapes and electron opacities. Relationships to other basidiomycetous hyphal tip cells are discussed.Abbreviations AV apical vesicle - C Celsius - diam diameter - f filasome - G Golgi body equivalent - h hour - nm nanometer - M mitochondria - ME membranous elements; min minute - MV microvesicle - MVB multivesicular body - N nucleus - OsO4 osmium tetroxide - R ribosome - ER endoplasmic reticulum - S Spitzenkörper - Va vacuole - m micrometer  相似文献   

14.
Summary Vacuolated and zymogenic cells, which are two of five cell types identified by electron microscopy in gastric epithelium of B. schlosseri, are described in detail. The vacuolated cells are characterized by one, or a few, supranuclear vacuoles containing myelin figures. A peculiar Golgi apparatus is consistently found at the base of the vacuoles; it consists of cisternae frequently containing small vesicles and tubules of constant diameter and/or a strong electron-opaque material. A variety of vesicles and multivesicular bodies are visible in the apical cytoplasm below long ribbon-like microvilli. The se findings suggest that the vacuolated cells are involved in absorptive and perhaps secretory activity. The zymogenic cells are characterized by a highly developed RER, numerous apical secretory granules and a well developed supranuclear Golgi apparatus. At the apical end, autophagosomes are frequently encountered, some of which contain also zymogen granules. Both cell types contain numerous lipid droplets, which are interpreted as an energy reserve available for the cells and for the entire colony during the change of generation. Correlation between structure and function in both cell types is discussed by taking into account the peculiar life cycle of B. schlosseri, as well as previously reported data on similar cells in other ascidians.We would like to dedicate this work to Prof. Giuseppe Reverberi on the occasion of his 70th birthday.The authors are indebted to Profs. A. Sabbadin and G. Mazzocchi for their most helpful suggestions and advice. We would also like to thank Mr. G. Tognon for technical assistance and the staff of the Stazione Idrobiologica di Chioggia for their assistance in collecting material. — This research was supported by a grant of C.N.R., contract from the Istituto di Biologia del Mare, Venezia, No. 7100396/04115542 and with the E.M. facilities of C. N. R. contract No. 70.01798.04.115.876.  相似文献   

15.
Summary The routes for adsorptive and receptor-mediated endocytosis were studied in vivo after microinjection of tracers into the lumen of the seminiferous tubules, and in vitro in isolated germ cells of different mammals. Cationic ferritin was located on the plasma membrane, in vesicles, in tubules, in multivesicular bodies and in lysosome-like granules of mouse spermatocytes. In these cells the number of multivesicular bodies varied during spermatogenesis. Spermatids and to a lesser extent residual bodies also performed adsorptive endocytosis. In the rat and monkey (Macaca fascicularis) diferric transferrin was specifically taken up by germ cells via receptor-mediated endocytosis. The labelling was observed subsequently in membrane pits, vesicles, endosome-like bodies and pale multivesicular bodies. A progressive decrease in the frequency of the labelling of the germ cells by transferrin-gold particles was observed from spermatogonia to spermatocytes and to early spermatids, which could indicate that iron is particularly required by germ cells during the mitotic and meiotic processes. Adsorptive and receptor-mediated endocytosis therefore occurs in all classes of germ cells. These endocytic processes are most probably required for germ cell division, differentiation and metabolism.  相似文献   

16.
Ultrastructure and acid phosphatase activity of aged calls of Euglena granulata are reported. Cells are spherical, quiescent, and nonflagellated. The most conspicuous attribute of aged cells is the accumulation of cyloplasmic vacuoles and lysosome-like structures containing heavily stained, pigmented bodies and membrane fragments. In chloroplasts, portions of whorled lamellae arc abscised and subsequently incorporated into lysosome-like structures; osmiophilic granules increase in number. Membranes surrounding eyespot granules disappear and the granules themselves become diffuse; the usual association with microtubules is not seen in aged cells. Acid phosphatase precipitation accumulates largely at the maturing face of dictyosomes and associated vesicles; there is also activity in multivesicular and lysosome-like vacuoles.  相似文献   

17.
R. Wetherbee 《Protoplasma》1978,94(3-4):341-345
Summary Cytoplasmic membranous tubules of uniform diameter (50 mm) are observed only during late wall formation in carpospore development. These structures are continuous with the plasma membrane.  相似文献   

18.
Summary The ultrastructural localisation of acid phosphatases (AcPhs) during the normal daily breakdown of rhabdomere membrane in Dinopis has been examined using -glycerophosphate and p-nitrophenyl phosphate as substrates. Results are related to the classification of organelles in the receptors given by Blest, Powell and Kao (1978). Weak and infrequent reactions are obtained in multivesicular bodies (mvbs) and multilamellar bodies (mlbs) derived from them. Residual bodies (rbs) begin to react strongly as they lyse. Source of AcPhs is endoplasmic reticulum which has barely differentiated towards the GERL configuration; it becomes reactive as it is incorporated into secondary lysosomes. GERL tubules, Y-bodies and vesicles respond erratically and weakly, and are also incorporated into rbs. No evidence was found for a significant participation of Golgi bodies in these processes, and acid phosphatase cytochemistry fails to reveal a topographical relationship between GERL in these cells and Golgi saccules. Coated vesicle clusters found in the predawn receptive segments are AcPh-negative; this implies that their previous identification as GERL-derived Nebenkerne carrying hydrolytic enzymes to newly-formed mvbs (Blest, Kao and Powell, 1978) is dubious. Isolation bodies and autophagic vacuoles enclosing other organelles in pathological receptors give strong reactions while adjacent secondary lysosomes derived from rhabdomere membrane and associated GERL give weak ones. It is concluded that rhabdomere-derived rb lysis is more tightly regulated than other autophagic processes, and it is suggested that a high degree of control is necessary in a receptor which may repeat the autophagy of a large mass of transductive membrane at least 60–100 times in the course of its working life.The authors thank Professor D.T. Anderson F.R.S. for the use of field facilities at the Crommelin Biological Field Station of Sydney University at Warrah, Pearl Beach, New South Wales throughout all these studies; Dr. Gary Griffiths (EMBO, Heidelberg) and Dr. Alex Pyliotis (Biochemistry, SGS, Australian National University) for some helpful comments on acid phosphatase histochemistry; Sally J. Stowe for help in the field; and Rod Whitty and the staff on the Electron Microscopy Unit for advice and support. Figure 28 was prepared by Chris Snoek  相似文献   

19.
Summary The ileal absorptive cells of suckling rats exhibit high levels of endocytic activity being engaged in nonselective uptake of macromolecules from the intestinal lumen. The apical cytoplasm usually contains an extensive network of small, membrane-limited tubules (apical tubules: AT), in addition to newly formed endocytic vesicles and large endocytic vacuoles. To determine whether the AT are directly involved in the endocytic process by carrying the tracer into the cell, we have analysed movements of the apical cell membrane of the ileal absorptive cells by using a membrane-bound tracer (horseradish peroxidase-labelled cancanavalin-A: Con-A HRP). The ileal absorptive cells were exposed in vitro to Con-A HRP for 10 min at 4° C, incubated for different times in Con-A free medium at 37° C, and prepared for electron microscopy. After 1 min incubation at 37° C, invaginations of the apical cell membrane, including coated pits, and endocytic vesicles were labelled with HRP-reaction product, whereas the AT and large endocytic vacuoles were negative. After 2.5 min, almost all the large endocytic vacuoles were labelled with reaction product, which was seen in their vacuolar lumen and along the luminal surface of their limiting membrane. A few AT with reaction product were seen in the apical cytoplasm; they were in frequent connection with the reaction-positive large endocytic vacuoles. With increasing incubation time, the number of the labelled AT increased. Thus, after 15 min at 37° C, the apical cytoplasm was fully occupied by the reaction-positive AT. The ends of these AT were often continuous with small spherical coated vesicles. No reaction product was detected in the Golgi complex at any time after incubation. These observations indicate that the AT located in the apical cytoplasm probably originate by budding off from the large endocytic vacuoles, rather than being involved in the process of endocytosis.  相似文献   

20.
In the course of spermiogenesis in the mouse, spermatid cytoplasm contains numerous membrane pits, vesicles and membranous tubules which are frequently anastomosed. Pale and dense multivesicular bodies (MVB) and secondary lysosome-like structures are also present in the cytoplasm. In order to study the pathway of non-specific adsorptive endocytosis in spermatids, cationic ferritin (CF) was directly microinjected into the lumen of seminiferous tubules, and added to germinal cell culture. Tissue and cultures were fixed at various time intervals after injection. Two-5 hr after microinjection of tracer, CF was found simultaneously in vesicles, tubules, MVB and in lysosome-like bodies present in spermatids at all steps of spermiogenesis. Various membranous components of the Golgi medulla, and the innermost transsaccule of the Golgi cortex were labelled simultaneously. In primary cultures of spermatids, the vesicles contained the marker 5 min after its deposition; 10 min after deposition, CF was evident in tubules; at 30 min, CF was present in pale MVB; at 1 hr, the dense MVB and lysosome-like bodies were labelled. Finally, at 2 hr 30 min, vesicles and tubules of the Golgi medulla contained CF grains. Apparently spermatids are very active cells in the process of adsorptive endocytosis throughout spermiogenesis. Endocytosis in spermatids is probably one of the mechanisms involved in the uptake of material used to build up spermatozoa components. The strong labelling of the Golgi region probably point to its role in recycling endocytosed membranes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号