首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The reaction between hydroxylamine (NH2OH) and human hemoglobin (Hb) at pH 6-8 and the reaction between NH2OH and methemoglobin (Hb+) chiefly at pH 7 were studied under anaerobic conditions at 25 degrees C. In presence of cyanide, which was used to trap Hb+, Hb was oxidized by NH2OH to methemoglobin cyanide with production of about 0.5 mol NH+4/mol of heme oxidized at pH 7. The conversion of Hb to Hb+ was first order in [Hb] (or nearly so) but the pseudo-first-order rate constant was not strictly proportional to [NH2OH]. Thus, the apparent second-order rate constant at pH 7 decreased from about 30 M-1 X s-1 to a limiting value of 11.3 M-1 X s-1 with increasing [NH2OH]. The rate of Hb oxidation was not much affected by cyanide, whereas there was no reaction between NH2OH and carbonmonoxyhemoglobin (HbCO). The pseudo-first-order rate constant for Hb oxidation at 500 microM NH2OH increased from about 0.008 s-1 at pH 6 to 0.02 s-1 at pH 8. The oxidation of Hb by NH2OH terminated prematurely at 75-90% completion at pH 7 and at 30-35% completion at pH 8. Data on the premature termination of reaction fit the titration curve for a group with pK = 7.5-7.7. NH2OH was decomposed by Hb+ to N2, NH+4, and a small amount of N2O in what appears to be a dismutation reaction. Nitrite and hydrazine were not detected, and N2 and NH+4 were produced in nearly equimolar amounts. The dismutation reaction was first order in [Hb+] and [NH2OH] only at low concentrations of reactants and was cleanly inhibited by cyanide. The spectrum of Hb+ remained unchanged during the reaction, except for the gradual formation of some choleglobin-like (green) pigment, whereas in the presence of CO, HbCO was formed. Kinetics are consistent with the view advanced previously by J. S. Colter and J. H. Quastel [1950) Arch. Biochem. 27, 368-389) that the decomposition of NH2OH proceeds by a mechanism involving a Hb/Hb+ cycle (reactions [1] and [2]) in which Hb is oxidized to Hb+ by NH2OH.  相似文献   

2.
Reactions of human oxyhemoglobin A with iron(II) compounds have been investigated. Human oxyhemoglobin (HbO2) reacts with aquopentacyanoferrate(II), Fe(II)(CN)5H2O3-, to yield hydrogen peroxide, aquomethemoglobin and Fe(III)(CN)5H2O2-. The reaction follows a second order rate law, first order in the pentacyanide and in HbO2. Since reaction rates are lower in the presence of catalase, the H2O2 produced must promote metHb formation in reactions independent of pentacyanide. Changes in concentrations of effectors (e.g. H+, inositol hexaphosphate, Cl-, and Zn2+), alkylation of beta-93 cysteine with N-ethylmaleimide, and substitution at distal histidine (as in Hb Zurich with beta-63 His----Arg) in each case can markedly affect pentacyanide reaction rates demonstrating a fine control of rates by protein structure. Hexacyanoferrate(II) (ferrocyanide) reacts with HbO2 to produce cyano-metHb as well as aquo-metHb but the reaction with the hexacyanide is much slower than with the aquopentacyanide. Iron(II) EDTA converts HbO2 to deoxy-Hb with no evidence for formation of metHb as an intermediate. These findings support a mechanism in which the pentacyanide anion reacts directly with coordinated dioxygen. One-electron transfers to O2 from both pentacyanide iron(II) and heme iron(II) result in the formation of a mu-peroxo intermediate, HbFe(III)-O-O-Fe(III) (CN)5(3-). Hydrolysis of this intermediate yields metHb . H2O, H2O2, and FeIII(CN)5H2O2-. The reaction of HbO2 with Fe(CN)6(4-) must follow an outer sphere electron transfer mechanism. However, the very slow rate that is seen with Fe(CN)6(4-) could arise entirely from the pentacyanide produced from loss of one cyanide ligand from the hexacyanide. Fe(II)EDTA reacts rapidly with free O2 in solution but can not interact directly with the heme-bound O2 of HbAO2. The dynamic character of the O2 binding sites apparently permits access of the Fe2+ of the pentacyanide to coordinated dioxygen but the protein structure is not sufficiently flexible to allow the larger Fe2+EDTA molecule to react with bound O2. It is necessary for maintenance of the oxygen transport function of the red cell for reductants such as the methemoglobin reductase system, glutathione, and ascorbate to be able to reduce metHb to deoxy-Hb. It is also important for these reductants to be unable to donate an electron to HbO2 to yield H2O2 and metHb. Thus, a mechanistic requirement for the delivery of one-electron directly to the dioxygen ligand, if peroxide is to be produced, enables the protein to protect the oxygenated species from those electron donors normally present in the cell by denying these reductants steric access to coordinated O2.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

3.
A spectrophotometric method has been developed that uses extracellular hemoglobin (Hb) to trap nitric oxide (NO) released during denitrification as nitrosyl hemoglobin (HbNO). The rate of complexation of NO with Hb is about at the diffusion controlled limit for protein molecules and the product, HbNO, is essentially stable. Hb was added to an anaerobic bacterial suspension and denitrification was initiated with either KNO2 or KNO3. HbNO formation was observed for six species of denitrifying bacteria and showed isosbestic points at 544, 568, and 586 nm. Cellular NO production, presumably by nitrite reductase, was kinetically distinct from the much slower chemical reaction of Hb with KNO2 to form methemoglobin and HbNO. The rate of HbNO formation was proportional to cell density, essentially independent of pH from 6.8 to 7.4, nearly zero order in [Hb] and, at least with Paracoccus denitrificans, strongly inhibited by rotenone and antimycin A. The Cu chelator, diethyldithiocarbamate, had no effect on HbNO formation by Pa. denitrificans, but abolished that by Achromobacter cycloclastes which uses a Cu-containing nitrite reductase known to be inactivated by the chelator. HbNO formation did not occur with non-denitrifying bacteria. The stoichiometry at high [Hb] for conversion of Hb to HbNO was 1.3-1.8 KNO2 per Hb for Pa. denitrificans, Pseudomonas aeruginosa, and A. cycloclastes and about 3.4 for Pseudomonas stutzeri. The former range of values corresponds to a partition of about 2 N atoms in 3 toward trapping and 1 in 3 toward reduction on the pathway to N2. Nitrogen not trapped appeared largely as N2O in presence of acetylene. The results are consistent with a model in which NO is a freely diffusible intermediate between nitrite and N2O, providing that nitric oxide reductase is or nearly is a diffusion controlled enzyme.  相似文献   

4.
The reaction between carboxyhemoglobin and reduced microperoxidase (MP): Hb4(CO)4 + 4MP=Hb4 + 4MPCO, recently reported by us, has been further studied. By generating species Hb4(CO), Hb4(CO)2, and Hb(CO)3 in the stopped flow cuvette by the reaction of dithionite with the species of the general formula Hb4(O2)x(CO)y(x + y=4) in the presence of microperoxidase it has been possible to determine the stepwise CO dissociation rate constants l4, l3, l2, and l1. The overall CO dissociation rate constant l, which is the same in this system as l4, is not affected by 2,3-diphosphoglyceric acid. The activation energy of the reaction is 21,400 cal in 15-25 degrees range. The ratio deltal/deltapH is approximately 3 in 6.5 to 7.5 pH range. The kinetic data indicate that, compared to HbO2, the contribution to the cooperativity of the dissociation rate constants of carboxyhemoglobin is greatly reduced. The ligand-dependent differences in the reactions of Hb with CO, O2, and NO suggest that in the combination reactions the ligand plays an active role in the rate-limiting step.  相似文献   

5.
Nagababu E  Ramasamy S  Rifkind JM 《Biochemistry》2007,46(41):11650-11659
The reaction of nitrite with deoxyhemoglobin (deoxyHb) results in the reduction of nitrite to NO, which binds unreacted deoxyHb forming Fe(II)-nitrosylhemoglobin (Hb(II)NO). The tight binding of NO to deoxyHb is, however, inconsistent with reports implicating this reaction with hypoxic vasodilation. This dilemma is resolved by the demonstration that metastable intermediates are formed in the course of the reaction of nitrite with deoxyHb. The level of intermediates is quantitated by the excess deoxyHb consumed over the concentrations of the final products formed. The dominant intermediate has a spectrum that does not correspond to that of Hb(III)NO formed when NO reacts with methemoglobin (MetHb), but is similar to metHb resulting in the spectroscopic determinations of elevated levels of metHb. It is a delocalized species involving the heme iron, the NO, and perhaps the beta-93 thiol. The putative role for red cell reacted nitrite on vasodilation is associated with reactions involving the intermediate. (1) The intermediate is less stable with a 10-fold excess of nitrite and is not detected with a 100-fold excess of nitrite. This observation is attributed to the reaction of nitrite with the intermediate producing N2O3. (2) The release of NO quantitated by the formation of Hb(II)NO is regulated by changes in the distal heme pocket as shown by the 4.5-fold decrease in the rate constant in the presence of 2,3-diphosphoglycerate. The regulated release of NO or N2O3 as well as the formation of the S-nitroso derivative of hemoglobin, which has also been reported to be formed from the intermediates generated during nitrite reduction, should be associated with any hypoxic vasodilation attributed to the RBC.  相似文献   

6.
The nitrite anion (NO(-)(2)) has recently received much attention as an endogenous nitric oxide source that has the potential to be supplemented for therapeutic benefit. One major mechanism of nitrite reduction is the direct reaction between this anion and the ferrous heme group of deoxygenated hemoglobin. However, the reaction of nitrite with oxyhemoglobin (oxyHb) is well established and generates nitrate and methemoglobin (metHb). Several mechanisms have been proposed that involve the intermediacy of protein-free radicals, ferryl heme, nitrogen dioxide (NO(2)), and hydrogen peroxide (H(2)O(2)) in an autocatalytic free radical chain reaction, which could potentially limit the usefulness of nitrite therapy. In this study we show that none of the previously published mechanisms is sufficient to fully explain the kinetics of the reaction of nitrite with oxyHb. Based on experimental data and kinetic simulation, we have modified previous models for this reaction mechanism and show that the new model proposed here is consistent with experimental data. The important feature of this model is that, whereas previously both H(2)O(2) and NO(2) were thought to be integral to both the initiation and propagation steps, H(2)O(2) now only plays a role as an initiator species, and NO(2) only plays a role as an autocatalytic propagatory species. The consequences of uncoupling the roles of H(2)O(2) and NO(2) in the reaction mechanism for the in vivo reactivity of nitrite are discussed.  相似文献   

7.
Nitrite binds reversibly to the ferriheme proteins metmyoglobin and methemoglobin in aqueous buffer solution at a physiological pH of 7.4. The spectral changes recorded for the formation of metMb(NO2-) differ significantly from those observed for the nitrosylation of metMb, which can be accounted for in terms of the different reaction products. Nitric oxide binding to metMb produces a nitrosyl product with Fe(II)-NO+ character, whereas the reaction with nitrite produces an Fe(III)-NO2- complex. The kinetics of the binding and release of nitrite by metMb and metHb were investigated by stopped-flow techniques at ambient and high pressure. The kinetic traces recorded for the reaction of nitrite with metMb exhibit excellent single-exponential fits, whereas nitrite binding to metHb is characterized by double-exponential kinetics which were assigned to the reactions of the alpha- and beta-chains of metHb with NO2-. The rate constants for the binding of nitrite to metMb and metHb were found to be much smaller than those reported for the binding of NO, such that nitrite impurities will not affect the latter reaction. The activation parameters (deltaH++,deltaS(ne),deltaV++) obtained from the temperature and pressure dependence of the reactions support the operation of a dissociative mechanism for the binding and release of nitrite, similar to that found for the binding and release of NO in metMb.  相似文献   

8.
Metabolic effects of hemoglobin gene expression in plants   总被引:3,自引:0,他引:3  
Hebelstrup KH  Igamberdiev AU  Hill RD 《Gene》2007,398(1-2):86-93
Hemoglobin (Hb) genes are ubiquitous in plants. Several classes have been identified and are expressed during infection by nitrogen-fixing symbionts, as a result of tissue hypoxia, during seed germination, and in developing (e.g. meristematic) tissues. The induction of the Hb gene by hypoxia is linked to a decrease in ATP levels and is mediated by Ca(2+). Numerous investigations have led to the conclusion that the main function of hypoxically-induced Hb is to metabolize nitric oxide (NO) formed as a by-product of nitrate/nitrite reduction. In this function, Hb serves as a part of an NO dioxygenase system, using traces of oxygen to convert NO to nitrate. It operates in conjunction with a methemoglobin reductase protein, which reduces the oxidized form of Hb (methemoglobin) formed in the course of the NO dioxygenase reaction. The complete reaction serves to maintain the cellular energy and redox state. Plant hemoglobins may also function to modulate effects of plant hormones that employ NO as a downstream signal transduction component.  相似文献   

9.
The reductive nitrosylation of ferric (met)hemoglobin is of considerable interest and remains incompletely explained. We have previously observed that at low NO concentrations the reaction with tetrameric hemoglobin occurs with an observed rate constant that is at least 5 times faster than that observed at higher concentrations. This was ascribed to a faster reaction of NO with a methemoglobin-nitrite complex. We now report detailed studies of this reaction of low NO with methemoglobin. Nitric oxide paradoxically reacts with ferric hemoglobin with faster observed rate constants at the lower NO concentration in a manner that is not affected by changes in nitrite concentration, suggesting that it is not a competition between NO and nitrite, as we previously hypothesized. By evaluation of the fast reaction in the presence of allosteric effectors and isolated β- and α-chains of hemoglobin, it appears that NO reacts with a subpopulation of β-subunit ferric hemes whose population is influenced by quaternary state, redox potential, and hemoglobin dimerization. To further characterize the role of nitrite, we developed a system that oxidizes nitrite to nitrate to eliminate nitrite contamination. Removal of nitrite does not alter reaction kinetics, but modulates reaction products, with a decrease in the formation of S-nitrosothiols. These results are consistent with the formation of NO(2)/N(2)O(3) in the presence of nitrite. The observed fast reductive nitrosylation observed at low NO concentrations may function to preserve NO bioactivity via primary oxidation of NO to form nitrite or in the presence of nitrite to form N(2)O(3) and S-nitrosothiols.  相似文献   

10.
The major pathway for nitric oxide scavenging in red cells involves the direct reaction of the gas with HbO2 to form nitrate and the ferric form of the protein, metHb. Because both atoms of O2 are incorporated into nitrate, this process is called NO dioxygenation (NOD). The NOD reaction involves an initial, very rapid bimolecular addition of NO to bound O2 to form a transient Fe(III)-peroxynitrite complex, which can be observed spectrally at alkaline pH. This intermediate rapidly isomerizes at pH 7 (t1/2 <== 1 ms) to metHb and NO3-, which is nontoxic and readily transported out of red cells and excreted. The rate of NO consumption by intracellular HbO2 during normal blood flow is limited by diffusion up to and into the red cells and is too slow to interfere significantly with vasoregulation. In contrast, extracellular HbO2 is highly vasoconstrictive, and the resultant hypertension is a significant side effect of most hemoglobin-based blood substitutes. The major cause of this blood pressure effect seems to be the high rate of NO dioxygenation by cell-free HbO2, which can extravasate into the vessel walls and interfere directly with NO signaling between endothelial and smooth muscle cells. This interpretation is supported by a strong linear correlation between the magnitude of the blood pressure effect caused by infusion of cross-linked recombinant hemoglobin tetramers in vivo and the rate of NO dioxygenation by these proteins measured in vitro.  相似文献   

11.
The results presented in this report suggest that human oxyhemoglobin can directly form methemoglobin and superoxide anion when flashed with low intensity (38 joules) white light. The effect only occurred in quartz but not glass (cut off lambda approximately equal to 300 nm) cuvettes. The formation of O2 was established by observing the reduction of oxidized cytochrome c concomitant with MetHb formation at pH 9, and by showing that superoxide dismultase and catalse inhibit cytochrome c reduction at that pH. The inhibition of cytochrome c reduction by catalase led us to explore the possibility that H2O2 might reduce oxidized cytochrome c at pH 9. We show that H2O2 does reduce oxidized cytochrome c at that pH but not at pH 7. Furthermore, catalase but not superoxide dismutase, almost completely inhibited this reduction process. These experiments serve to confirm our interpretation of the effect of catalase on the reduction of oxidized cytochrome c in the photolytic experiments, thus establishing that H2O2 was also formed. In addition, we were able to identify the production of O2 and H2O2 due to the photolysis of water in agreement with the results of McCord and Fridovich ((1973) Photochem. Photobiol. 17, 115-121). Production of O2 from this source was considerably less than that observed when HbO2 was present. Addition of MetHb to aerated solutions of oxidized cytochrome c did not cause additional reduction, unlike addition of HbO2. The production of MetHb was found to have at least two components. One component was the primary photolytic process, and the second was a strongly pH-dependent reattack of HbO2 by O2. Addition of superoxide dismutase inhibited this second component, but did not significantly effect the primary photolytic process.  相似文献   

12.
The oxidation of oxyhemoglobin produced by sodium nitrite occurs in two stages: 1) an initial slow phase followed by 2) a rapid autocatalytic phase that carries the reaction to completion. The length of the slow phase is extended when uric acid is added to the reaction mixture. As the concentration of uric acid increases, the length of the slow phase increases until a concentration is reached at which the rate of methemoglobin formation is nearly linear until the reaction is complete. Further increases in the concentration of uric acid do not affect the rate of the reaction in the slow phase. At low concentrations of uric acid, where an autocatalytic phase is reached, uric acid is degraded during the reaction. At concentrations of uric acid that keep the reaction in the linear phase, the uric acid is not degraded. It is concluded that uric acid may protect oxyhemoglobin by reacting with HbO2H to yield [HbOH]+ and the urate radical. The urate radical may react with a second molecule of HbO2H and become oxidized. At higher concentrations, the radical may undergo electron transfer with oxyhemoglobin to regenerate the uric acid and form methemoglobin.  相似文献   

13.
Nitric oxide (NO) has high affinity to heme and by interaction with oxyhemoglobin (HbO2) is converted into nitrate to form methemoglobin (MetHb) as a side product. In combining with deoxy-Hb NO yields a stable molecule of nitrosyl-hemoglobin (HbFe(II)NO) that can further be converted into nitrate and hemoglobin (Hb). In addition, Hb was shown to transport NO in a form of S-nitrosohemoglobin (SNO-Hb). These features of the Hb and NO interaction are important for blood oxygen transport including hemoglobin-oxygen affinity (HOA). The present investigation was aimed to study the blood oxygen transport indices (pO2, pCO2, pH, HOA, etc.) in rats under hypothermia combined with a modification of L-arginine-NO pathway. To modify the L-arginine-NO pathway, rats were administered with N(G)-nitro-L-arginine methyl ester (L-NAME), L-arginine, or sodium nitroprusside (SNP) intravenously before cooling. A substantial impairment of oxygen delivery and development of hypoxia, with an important contribution of HOA into the latter accompanied the deep hypothermia in rats. All the experimental groups developed metabolic acidosis, less pronounced in rats treated with L-arginine only. In the experiments with a modification of the L-arginine-NO pathway, an enhanced cold resistance, attenuated oxygen deficiency, and a weaker oxyhemoglobin dissociation curve (ODC) shift leftwards were observed only after the administration of L-arginine. Neither SNP nor L-NAME had not any protective effects. L-Arginine lowered the value of standard P50 (pO2, corresponding to 50% Hb saturation with oxygen at 37 degrees C, pH 7.4, and pCO2 = 40 mmHg). The actual P50 (at actual pH, pCO2 and temperature) decreased by approximately 15 mmHg and was significantly higher than that under hypothermia without the drug treatment (21.03 +/- 0.35 vs 17.45 +/- 0.60 mmHg). NO also can contribute to this system through different mechanisms (HOA modification, vascular tone regulation, peroxynitrite formation, and effects).  相似文献   

14.
The direct electrochemistry of hemoglobin (Hb) immobilized on a hexagonal mesoporous silica (HMS)-modified glassy carbon electrode was described. The interaction between Hb and the HMS was investigated using UV-Vis spectroscopy, FT-IR, and electrochemical methods. The direct electron transfer of the immobilized Hb exhibited two couples of redox peaks with the formal potentials of -0.037 and -0.232 V in 0.1 M (pH 7.0) PBS, respectively, which corresponded to its two immobilized states. The electrode reactions showed a surface-controlled process with a single proton transfer at the scan rate range from 20 to 200 mV/s. The immobilized Hb retained its biological activity well and displayed an excellent response to the reduction of both hydrogen peroxide (H2O2) and nitrate (NO2-). Its apparent Michaelis-Menten constants for H2O2 and NO2- were 12.3 and 49.3 microM, respectively, showing a good affinity. Based on the immobilization of Hb on the HMS and its direct electrochemistry, two novel biosensors for H2O2 and NO2- were presented. Under optimal conditions, the sensors could be used for the determination of H2O2 ranging from 0.4 to 6.0 microM and NO2- ranging from 0.2 to 3.8 microM. The detection limits were 1.86 x 10(-9) M and 6.11 x 10(-7) M at 3sigma, respectively. HMS provided a good matrix for protein immobilization and biosensor preparation.  相似文献   

15.
Lumbricus terrestris HbO2 and HbCO dissociated below pH 5.0; a time-dependent alteration to the met form occurred at pH less than 5 and pH less than 4.5, respectively. The extent of dissociation was unaffected by alkaline earth cations but was decreased by an increase in ionic strength. HbO2 and HbCO exposed to pH 4.0-4.8 were centrifuged to obtain the undissociated pellet (P1) and dissociated supernatant (S1) fractions. S1 was reassociated at pH 7.0 by dialysis against various buffers and then centrifuged to obtain the reassociated pellet (P2) and unreassociated supernatant (S2) fractions. Reassociation was possible only if S1 was dialyzed against water prior to return to neutral pH; otherwise precipitation occurred starting at about pH 5.3. The extent of reassociation varied from about 40 to 80%, was usually higher for HbCO than HbO2, and was unaffected by an increase in ionic strength or by Ca(II). Gel filtration of P2 on Sephacryl S-300 at neutral pH gave one peak IaR, eluting at a slightly greater volume than the native Hb; S1 and S2 gave in addition, three peaks, Ib (200 kDa), II (65 kDa), and III (18 kDa). Sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed that P2 was slightly deficient in subunit M relative to the Hb, that Ib was deficient in subunits D1 and D2 and that II and III consisted of subunits D1 + D2 + T and subunit M, respectively. Scanning transmission electron microscopy of P2 showed that it was smaller than the native hemoglobin: 25 nm in diameter and 16 nm in height, instead of 30 X 20 nm. Comparison of the results of the dissociations of Lumbricus Hb at alkaline pH (Kapp, O. H., Polidori, G., Mainwaring, M., Crewe, A. V., Vinogradov, S. N. (1984) J. Biol. Chem. 259, 628-639) with those obtained in this study suggested that the Hb quaternary structure was not multimeric and that an alternative model had to be considered. In the proposed model it is assumed that subunits D1 and D2 form a scaffolding or "bracelet," decorated with 12 complexes of M and T subunits.  相似文献   

16.
The dissociation of NO from nitrosylhemoglobin   总被引:1,自引:0,他引:1  
The reaction between nitrosylhemoglobin and an excess of deoxymyoglobin has been used to study the kinetics of ligand dissociation from Hb4(NO)4 and Hb4(no)1 species. The kinetics of the dissociation of the first NO molecule from Hb4(no)4 was studied by the ligand replacement method. The results indicate that: (a) the ligand dissociation reaction in Hb4(NO)4 is a cooperative process. This is consistent with the results of Moore and Gibson (Moore, E.G., and Gibson, Q.H. (1977) J. Biol. Chem. 251, 2788-2794). (b) alpha and beta chains in the T state formed by adding IHP to Hb4(NO)4 show kinetic heterogeneity. (c) A similar kinetic heterogeneity is shown by alpha and beta chains in the species Hb4NO in the absence of IHP.(d) The value for the NO dissociation rate constant calculated from the slow phases observed in (b) and (c) is similar to that estimated for the R state. These results suggest that the R to T transition brought about with or without inositol hexaphosphate changes the ligand affinity of one type of the chains much more than of the other. On the basis of IR and EPR studies, it is suggested that alpha chains undergo larger functional changes in R to T transition (or vice versa) in nitrosylhemoglobin. The kinetic parameters for HbNO are compared with those of HbO2 and HbCO and the implications of the results for the reaction mechanism are discussed.  相似文献   

17.
Nitric oxide (NO) is an important biological regulator. It can bind to heme iron and form NO+, involved in the synthesis of S-nitrosothiols (-SNOs). NO reacts with human hemoglobin (Hb) to produce the derivatives: S-nitrosylhemoglobin (-SNOHb) and nitrosylhemoglobin (HbNO). At neutral pH values, free NO does not react directly with the -SH groups of Hb. The reductive nitrosylation of Fe(III) heme upon reaction with NO has long been studied, but it is not yet completely known. To quantify the reaction of NO with Hb, we developed a new, sensitive (nanomolar concentration range) electrochemical assay to selectively measure HbNO and -SNOHb. The assay also allows the monitoring of free NO during the reaction with human Fe(III)Hb and Fe(II)HbO(2).  相似文献   

18.
Oxidation of oxyhemoglobin by nitrite is characterized by the presence of a lag phase followed by the autocatalysis. Just before the autocatalysis begins, an asymmetric ESR signal is detected which is similar to that of the methemoglobin radical generated from methemoglobin and H2O2 in shape, g value (2.005), peak-to-peak width (18 G) and other properties, except the difference in the dependence on temperature. Generation of H2O2 is indicated by the prolongation of the lag phase by the addition of catalase. On the other hand, the oxidation is modified by neither superoxide dismutase nor Nitroblue tetrazolium. The oxidation is prolonged in the presence of KCN. The present results indicate a free-radical mechanism for the oxidation in which the asymmetric radical catalyzes the formation of NO2 from NO2- by a peroxidase action and NO2 oxidizes oxyhemoglobin in the autocatalytic phase.  相似文献   

19.
We report that a lactoperoxidase (LPO) metabolite derived from nitrite (NO2-) catalyses one-electron oxidation of biological electron donors and antioxidants such as NADH, NADPH, cysteine, glutathione, ascorbate, and Trolox C. The radical products of the reaction have been detected and identified using either direct EPR or EPR combined with spin trapping. While LPO/H2O2 alone generated only minute amounts of radicals from these compounds, the yield of radicals increased sharply when nitrite was also present. In aerated buffer (pH 7) the nitrite-dependent oxidation of NAD(P)H by LPO/H2O2 produced superoxide radical, O2*-, which was detected as a DMPO/*O2H adduct. We propose that in the LPO/H2O2/NO2-/biological electron donor systems the nitrite functions as a catalyst because of its preferential oxidation by LPO to a strongly oxidizing metabolite, most likely a nitrogen dioxide radical *NO2, which then reacts with the biological substrates more efficiently than does LPO/H2O2 alone. Because both nitrite and peroxidase enzymes are ubiquitous our observations point at a possible mechanism through which nitrite might exert its biological and cytotoxic action in vivo, and identify some of the physiological targets which might be affected by the peroxidase/H2O2/nitrite systems.  相似文献   

20.
Some insects have a globin exclusively in their fast-growing larval stage. This is the case in the 4th-instar larva of Tokunagayusurika akamusi, a common midge found in Japan. In the polymorphic hemoglobin comprised of 11 separable components, hemoglobin VII (Ta-VII Hb) was of particular interest. When its ferric met-form was exposed to pH 5.0 from 7.2, the distal histidine was found to swing away from the E7 position. As a result, the iron(III) was converted from a hexacoordinate to a pentacoordinate form by a concomitant loss of the axial water ligand. The corresponding spectral changes in the Soret band were therefore followed by stopped-flow and rapid-scan techniques, and the observed first-order rate constants of k(out) = 25 s(-1) and kin = 128 s(-1) were obtained for the outward and inward movements, respectively, of the distal histidine residue in 0.1 m buffer at 25 degrees C. For O2 affinity, Ta-VII Hb showed a value of P50 = 1.7 Torr at pH 7.4, accompanied with a remarkable Bohr effect (deltaH+ = -0.58) almost equal to that of mammalian hemoglobins. We have also investigated the stability property of Ta-VII HbO2 in terms of the autoxidation rate over a wide range of pH from 4 to 11. The resulting pH-dependence curve was compared with those of another component Ta-V HbO2 and sperm whale MbO2, and described based on a nucleophilic displacement mechanism. In light of the O2 binding affinity, Bohr effect and considerable stability of the bound O2 against acidic autoxidation, we conclude that T. akamusi Hb VII can play an important role in O2 transport and storage as the major component in the larval hemolymph.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号