首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Androgen-regulated genes (ARG) are implicated in normal and neoplastic growth of the prostate. Recently, we reported genomic amplification and/or overexpression of a previously known neurotrophic factor, prosaposin, in androgen-independent (AI) or metastatic prostate cancer (PCa) cells and tissues. Prosaposin and/or its known active molecular derivatives (e.g., saposin C) function as a pluripotent growth factor with diverse biological activities that favor malignant phenotypes in PCa cells. In addition, prosaposin or saposin C upregulates androgen receptor (AR) and AR-target genes (i.e., prostate-specific antigen, Probasin) expression and activity in LNCaP cells. Here, we examined prosaposin as an ARG. We report that DHT treatment of LNCaP cells increases prosaposin expression. In addition, we demonstrate androgen-responsiveness of prosaposin promoter and AR occupancy to a hormone-responsive element located in the proximal region of the prosaposin promoter. Our data for the first time identify prosaposin as an ARG. This observation, together with the pleiotropic growth factor activity of prosaposin, might suggest a role for this molecule in AR-dependent progression of prostate cancer at its early or late AI-state.  相似文献   

2.
Neuroendocrine (NE) cells may play a role in prostate cancer progression. Both androgen deprivation and cAMP are well known inducers of NE differentiation (NED) in the prostate. Gene-expression profiling of LNCaP cells, incubated in androgen stripped medium, showed that the Cbeta isoform of PKA is up-regulated during NE differentiation. Furthermore, by using semi-quantitative RT-PCR and immunoblotting analysis, we observed that the Cbeta splice variants are differentially regulated during this process. Whereas the Cbeta2 splice variant is down-regulated in growth arrested LNCaP cells, the Cbeta1, Cbeta3 and Cbeta4 variants, as well as the RIIbeta subunit of PKA, are induced in NE-like LNCaP cells. The opposite effect of Cbeta expression could be mimicked by androgen stimulation, implying the Cbeta gene of PKA as a putative new target gene for the androgen receptor in prostate cancer. Moreover, to investigate expression of PKA subunits during prostate cancer progression, we did immunoblotting of several prostatic cell lines and normal and tumor tissue from prostate cancer patients. Interestingly, multiple Cbeta subunits were also observed in human prostate specimens, and the Cbeta2 variant was up-regulated in tumor cells. In conclusion, it seems that the Cbeta isoforms play different roles in proliferation and differentiation and could therefore be potential markers for prostate cancer progression.  相似文献   

3.

Background

Prostate cancer (PCa) is the most frequently diagnosed cancer in North American men. Androgen-deprivation therapy (ADT) accentuates the infiltration of immune cells within the prostate. However, the immunosuppressive pathways regulated by androgens in PCa are not well characterized. Arginase 2 (ARG2) expression by PCa cells leads to a reduced activation of tumor-specific T cells. Our hypothesis was that androgens could regulate the expression of ARG2 by PCa cells.

Methodology/Principal Findings

In this report, we demonstrate that both ARG1 and ARG2 are expressed by hormone-sensitive (HS) and hormone-refractory (HR) PCa cell lines, with the LNCaP cells having the highest arginase activity. In prostate tissue samples, ARG2 was more expressed in normal and non-malignant prostatic tissues compared to tumor tissues. Following androgen stimulation of LNCaP cells with 10 nM R1881, both ARG1 and ARG2 were overexpressed. The regulation of arginase expression following androgen stimulation was dependent on the androgen receptor (AR), as a siRNA treatment targeting the AR inhibited both ARG1 and ARG2 overexpression. This observation was correlated in vivo in patients by immunohistochemistry. Patients treated by ADT prior to surgery had lower ARG2 expression in both non-malignant and malignant tissues. Furthermore, ARG1 and ARG2 were enzymatically active and their decreased expression by siRNA resulted in reduced overall arginase activity and l-arginine metabolism. The decreased ARG1 and ARG2 expression also translated with diminished LNCaP cells cell growth and increased PBMC activation following exposure to LNCaP cells conditioned media. Finally, we found that interleukin-8 (IL-8) was also upregulated following androgen stimulation and that it directly increased the expression of ARG1 and ARG2 in the absence of androgens.

Conclusion/Significance

Our data provides the first detailed in vitro and in vivo account of an androgen-regulated immunosuppressive pathway in human PCa through the expression of ARG1, ARG2 and IL-8.  相似文献   

4.
5.
6.
7.
8.
Prostate cancer (PCa) is the second leading cause of cancer-related death in males in the United States. Majority of prostate cancers are originally androgen-dependent and sensitive to androgen-deprivation therapy (ADT), however, most of them eventually relapse and progress into incurable castration-resistant prostate cancer (CRPC). Of note, the activity of androgen receptor (AR) is still required in CRPC stage. The mitotic kinase polo-like kinase 1 (Plk1) is significantly elevated in PCa and its expression correlates with tumor grade. In this study, we assess the effects of Plk1 on AR signaling in both androgen-dependent and androgen-independent PCa cells. We demonstrate that the expression level of Plk1 correlated with tumorigenicity and that inhibition of Plk1 caused reduction of AR expression and AR activity. Furthermore, Plk1 inhibitor BI2536 down-regulated SREBP-dependent expression of enzymes involved in androgen biosynthesis. Of interest, Plk1 level was also reduced when AR activity was inhibited by the antagonist MDV3100. Finally, we show that BI2536 treatment significantly inhibited tumor growth in LNCaP CRPC xenografts. Overall, our data support the concept that Plk1 inhibitor such as BI2536 prevents AR signaling pathway and might have therapeutic potential for CRPC patients.  相似文献   

9.
10.
Studies have shown that a subgroup of tumor cells possess stemness characteristics having self-renewal capacity and the ability to form new tumors. We sought to identify the plausible stemness factor that determines the “molecular signature” of prostate cancer (PCa) cells derived from different metastases (PC3, PCa2b, LNCaP, and DU145) and whether androgen receptor (AR) influences the maintenance of stemness features. Here we show sex-determining region Y (SRY)-box 2 (SOX2) as a putative stem cell marker in PC3 PCa cells and not in DU145, PCa2b, or LNCaP cells. PCa2b and PC3 cells were derived from bone metastases. PCa2b cells which are positive for the AR failed to demonstrate the expression of either cluster of differentiation 44 (CD44) or SOX2. Knockdown (KD) of AR in these cells did not affect the expression of either CD44 or SOX2. Conversely, PC3 cells, which are negative for AR, expressed both CD44 and SOX2. However, the expression of AR downregulated the expression of both CD44 and SOX2 in PC3 cells. CD44 regulates SOX2 expression as KD of CD44 and reduces SOX2 levels considerably. SOX2 KD attenuated not only the expression of SNAIL and SLUG but also the migration and tumorsphere formation in PC3 cells. Collectively, our findings underscore a novel role of CD44 signaling in the maintenance of stemness and progression of cancer through SOX2 in AR-independent PC3 cells. SOX2 has a role in the regulation of expression of SNAIL and SLUG. SOX2 could be a potential therapeutic target to thwart the progression of SOX2-positive cancer cells or recurrence of androgen-independent PCa.  相似文献   

11.
12.
Recent studies have introduced prosaposin (PSAP) as a pleiotrophic growth factor for prostate cancer (PCa). We have previously reported that PSAP or one of its known active molecular derivatives, saposin C functions as an androgen-agonist and androgen-regulated gene (ARG) for androgen-sensitive (AS) PCa cell lines. Due to the potential significance of androgen receptor (AR)-expressing stroma in PCa, we evaluated a possible bi-directional paracrine regulatory interactions between DHT and PSAP in AR-positive prostate stromal (PrSt) cells. We report that saposin C in a ligand-independent manner increased AR expression, its nuclear content, and tyrosine phosphorylation. DHT treatment of PrSt cells increased PSAP expression. We also demonstrated both serum- and androgen-inducibility of a previously characterized hormone-responsive element (HRE) located in the proximal region of PSAP promoter. In addition, conditioned-media derived from PrSt cells and bone fibroblasts (i.e., MSF) differentially increased PSAP-promoter activity in androgen-independent (AI) PC-3 and AS LNCaP cells. Our data for the first time demonstrate that not only saposin C or PSAP regulates AR expression/activity, but also function as an ARG in PrSt. Ligand-independent activation of AR by PSAP or saposin C in PCa and stromal cells may contribute not only to prostate carcinogenesis at an early stage, but also in AI progression of the disease in an androgen-deprived tumor microenvironment.  相似文献   

13.
14.
The growth of the majority of prostate tumors is androgen-dependent, for which the presence of a functional androgen receptor is a prerequisite. Tumor growth can be inhibited by blockade of androgen receptor action. However, this inhibition is transient. To study the role of the androgen receptor in androgen-dependent and androgen-independent prostate tumor cell growth, androgen receptor mRNA expression was monitored in six different human prostate tumor cell lines and tumors, which were grown either in vitro or by transplantation on (male) nude mice. Androgen receptor mRNA was clearly detectable in three androgen-dependent (sensitive) tumors and absent or low in three androgen-independent tumors. Growth of the LNCaP prostate tumor cell line can be stimulated both by androgens and by fetal calf serum. In the former situation androgen receptor mRNA expression is downregulated, whereas in the latter no effect on androgen receptor mRNA levels can be demonstrated. Sequence analysis showed that the androgen receptor gene from LNCaP cells contains a point mutation in the region encoding the steroid-binding domain, which confers an ACT coVon encoding a threonine residue to GCT, encoding alanine.  相似文献   

15.
Despite many advances, prostate cancer (PCa) is still the second most frequently diagnosed cancer and fifth leading cause of cancer death in men worldwide. So far, the promising field of onco-immunology has not yet provided a satisfactory treatment option for PCa. Here we show that the ex vivo expansion and activation of cytokine-induced killer (CIK) cells isolated from primary peripheral blood mononuclear cells induce immune-mediated apoptosis in both human PCa LNCaP and C4-2 cells. Interestingly, pretreating LNCaP and C4-2 cells with either androgen or the androgen receptor (AR) antagonist enzalutamide mediates resistance to this immunogenic attack. This is associated with a reduction of both total cell loss and apoptosis levels suggesting one possible mechanism blunting onco-immunological activity. The data also suggest that secreted factors from AR ligand-treated PCa cell suppress lymphocyte proliferation. Further, we analysed immune-mediated killing activity using conditioned media from LNCaP and C4-2 treated cells. The obtained data suggest that the conditioned media from PCa treated cells does not influence a measurable lymphocyte-mediated apoptosis. However, analysing clonal expansion of activated lymphocytes, the androgen-derived conditioned media suppresses lymphocyte proliferation/expansion suggesting inhibition of onco-immunological activity by pretreatment of PCa cells with AR ligands.  相似文献   

16.
Alpha-2-glycoprotein 1, zinc-binding (AZGP1), known as zinc-alpha-2-glycoprotein (ZAG), is a multifunctional secretory glycoprotein and relevant to cancer metastasis. Little is known regarding the underlying mechanisms of AZGP1 in prostate cancer (PCa). In the present study, we report that AZGP1 is an androgen-responsive gene, which is involved in AR-induced PCa cell proliferation and metastasis. In clinical specimens, the expression of AZGP1 in PCa tissues is markedly higher than that in adjacent normal tissues. In cultures, expression of AZGP1 is upregulated by the androgen-AR axis at both messenger RNA and protein levels. Furthermore, Chip-Seq assay identifies canonical androgen-responsive elements (AREs) at AZGP1 enhancer; and dual-luciferase reporter assays reveal that the AREs is highly responsive to androgen whereas mutations of the AREs abolish the reporter activity. In addition, AZGP1 promotes G1/S phase transition and cell cycle progress by increasing cyclin D1 levels in PCa cells. Functional studies demonstrate that knocking down endogenous AZGP1 expression in LNCaP and CWR22Rv1 cells largely weaken androgen/AR axis-induced cell migration and invasion. In vivo xenotransplantation tumor experiments also show that AZGP1 involves in androgen/AR axis-mediated PCa cell proliferation. Taken together, our study implicates for the first time that AZGP1 is an AR target gene and is involved in androgen/AR axis-mediated cell proliferation and metastasis in primary PCa.  相似文献   

17.
18.
Androgen receptor (AR) function is critical for the development of male reproductive organs, muscle, bone and other tissues. Functionally impaired AR results in androgen insensitivity syndrome (AIS). The interaction between AR and microRNA (miR) signaling pathways was examined to understand the role of miRs in AR function. Reduction of androgen levels in Sprague-Dawley rats by castration inhibited the expression of a large set of miRs in prostate and muscle, which was reversed by treatment of castrated rats with 3 mg/day dihydrotestosterone (DHT) or selective androgen receptor modulators. Knockout of the miR processing enzyme, DICER, in LNCaP prostate cancer cells or tissue specifically in mice inhibited AR function leading to AIS. Since the only function of miRs is to bind to 3' UTR and inhibit translation of target genes, androgens might induce miRs to inhibit repressors of AR function. In concordance, knock-down of DICER in LNCaP cells and in tissues in mice induced the expression of corepressors, NCoR and SMRT. These studies demonstrate a feedback loop between miRs, corepressors and AR and the imperative role of miRs in AR function in non-cancerous androgen-responsive tissues.  相似文献   

19.
Heat shock proteins (HSPs) are molecular chaperones that play a pivotal role in correct folding, stabilization and intracellular transport of many client proteins including those involved in oncogenesis. HSP70, which is frequently overexpressed in prostate cancer (PCa), has been shown to critically contribute to tumor cell survival, and might therefore represent a potential therapeutic target. We treated both the androgen receptor (AR)-positive LNCaP and the AR-negative PC-3 cell lines with the pharmacologic HSP70 inhibitor VER155008. Although we observed antiproliferative effects and induction of apoptosis upon HSP70 inhibition, the apoptotic effect was more pronounced in AR-positive LNCaP cells. In addition, VER155008 treatment induced G1 cell cycle arrest in LNCaP cells and decreased AR expression. Further analysis of the HSP system by Western blot analysis revealed that expression of HSP27, HOP and HSP90β was significantly inhibited by VER155008 treatment, whereas the HSP40, HSP60, and HSP90α expression remained unchanged. Taken together, VER155008 might serve as a novel therapeutic option in PCa patients independent of the AR expression status.  相似文献   

20.
Prostate cancer (PCa) progresses from an early stage, confined to prostate, to a more aggressive metastasized cancer related with loss of androgen responsiveness. Although, it has been recognized that PCa cells have unique metabolic features, their glycolytic profile in androgen-dependent and androgen-independent stages of disease is much less known. Hence, the main purpose of this study was to compare glucose metabolism in androgen-responsive (LNCaP) and androgen-nonresponsive (PC3) PCa cells. Cell culture medium was collected and differences in glucose consumption and, lactate and alanine production were measured using Proton Nuclear Magnetic Resonance ((1)H NMR) spectra analysis. The mRNA and protein expression of glucose transporters (GLUT1 and GLUT3), phosphofructokinase 1 (PFK1), lactate dehydrogenase (LDH) and monocarboxylate transporter (MCT4) were determined by real-time PCR and Western Blot, respectively. The obtained results demonstrate that androgen-responsive (LNCaP) and androgen-nonresponsive (PC3) cells consumed similar amounts of glucose, whereas PC3 cells present higher lactate production. This increase in lactate production was concomitant with higher levels of MCT4 protein, increased LDH activity and higher lactate/alanine ratio, also suggesting increased levels of oxidative stress in PC3 cells. However, protein levels of LDH, associated with lactate metabolism, and GLUT3, involved in glucose uptake, were decreased in PC3 comparatively with LNCaP. Androgen-responsive and nonresponsive PCa cells present distinct glycolytic metabolism profiles, which suggest that targeting LDH and MCT4 metabolic pathways may be an important step for the development of new diagnostic and therapeutic strategies in the different stages of PCa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号