共查询到20条相似文献,搜索用时 10 毫秒
1.
2.
HupUV proteins of Rhodobacter capsulatus can bind H2: evidence from the H-D exchange reaction. 下载免费PDF全文
The H-D exchange reaction has been measured with the D2-H2O system, for Rhodobacter capsulatus JP91, which lacks the hupSL-encoded hydrogenase, and R. capsulatus BSE16, which lacks the HupUV proteins. The hupUV gene products, expressed from plasmid pAC206, are shown to catalyze an H-D exchange reaction distinguishable from the H-D exchange due to the membrane-bound, hupSL-encoded hydrogenase. In the presence of O2, the uptake hydrogenase of BSE16 cells catalyzed a rapid uptake and oxidation of H2, D2, and HD present in the system, and its activity (H-D exchange, H2 evolution in presence of reduced methyl viologen [MV+]) depended on the external pH, while the H-D exchange due to HupUV remained insensitive to external pH and O2. These data suggest that the HupSL dimer is periplasmically oriented, while the HupUV proteins are in the cytoplasmic compartment. 相似文献
3.
4.
In the photosynthetic bacterium Rhodobacter capsulatus, the synthesis of the energy-producing hydrogenase, HupSL, is regulated by the substrate H2, which is detected by a regulatory hydrogenase, HupUV. The HupUV protein exhibits typical features of [NiFe] hydrogenases but, interestingly, is resistant to inactivation by O2. Understanding the O2 resistance of HupUV will help in the design of hydrogenases with high potential for biotechnological applications. To test whether this property results from O2 inaccessibility to the active site, we introduced two mutations in order to enlarge the gas access channel in the HupUV protein. We showed that such mutations (Ile65-->Val and Phe113-->Leu in HupV) rendered HupUV sensitive to O2 inactivation. Also, in contrast with the wild-type protein, the mutated protein exhibited an increase in hydrogenase activity after reductive activation in the presence of reduced methyl viologen (up to 30% of the activity of the wild-type). The H2-sensing HupUV protein is the first component of the H2-transduction cascade, which, together with the two-component system HupT/HupR, regulates HupSL synthesis in response to H2 availability. In vitro, the purified mutant HupUV protein was able to interact with the histidine kinase HupT. In vivo, the mutant protein exhibited the same hydrogenase activity as the wild-type enzyme and was equally able to repress HupSL synthesis in the absence of H2. 相似文献
5.
Cloning and sequencing of the genes encoding the large and the small subunits of the H2 uptake hydrogenase (hup) of Rhodobacter capsulatus 总被引:12,自引:0,他引:12
Michèle Leclerc Annette Colbeau Béatrice Cauvin Paulette M. Vignais 《Molecular & general genetics : MGG》1988,214(1):97-107
Summary The structural genes (hup) of the H2 uptake hydrogenase of Rhodobacter capsulatus were isolated from a cosmid gene library of R. capsulatus DNA by hybridization with the structural genes of the H2 uptake hydrogenase of Bradyrhizobium japonicum. The R. capsulatus genes were localized on a 3.5 kb HindIII fragment. The fragment, cloned onto plasmid pAC76, restored hydrogenase activity and autotrophic growth of the R. capsulatus mutant JP91, deficient in hydrogenase activity (Hup-). The nucleotide sequence, determined by the dideoxy chain termination method, revealed the presence of two open reading frames. The gene encoding the large subunit of hydrogenase (hupL) was identified from the size of its protein product (68108 dalton) and by alignment with the NH2 amino acid protein sequence determined by Edman degradation. Upstream and separated from the large subunit by only three nucleotides was a gene encoding a 34 256 dalton polypeptide. Its amino acid sequence showed 80% identity with the small subunit of the hydrogenase of B. japonicum. The gene was identified as the structural gene of the small subunit of R. capsulatus hydrogenase (hupS). The R. capsulatus hydrogenase also showed homology, but to a lesser extent, with the hydrogenase of Desulfovibrio baculatus and D. gigas. In the R. capsulatus hydrogenase the Cys residues, (13 in the small subunit and 12 in the large subunit) were not arranged in the typical configuration found in [4Fe–4S] ferredoxins. 相似文献
6.
7.
8.
9.
《BBA》1987,893(3):386-397
Three NAD(P)H dehydrogenases were found and purified from a soluble fraction of cells of the purple non-sulfur bacterium Rhodobacter capsulatus, strain B10. Molecular mass of NAD(P)H, NADPH and NADH dehydrogenases are 67 000 (4 · 18 000), 35 000 and 39 000, and the isoelectric points are 4.6, 4.3 and 4.5, respectively. NAD(P)H dehydrogenase is characterized by a higher sensitivity to quinacrine, NADPH dehydrogenase by its sensitivity to p-chloromercuribenzoate and NADH dehydrogenase by its sensitivity to sodium arsenite. In contrast to the other two enzymes, NAD(P)H dehydrogenase is capable of oxidizing NADPH as well as NADH, but the ratio of their oxidation rates depends on the pH. All NAD(P)H dehydrogenases reacted with ferricyanide, 2,6-dichlorophenolindophenol, benzoquinone and naphthoquinone, but did not exhibit transhydrogenase, reductase or oxidase activity. Moreover, NADH dehydrogenase was also capable of reducing FAD and FMN. NAD(P)H and NADH dehydrogenases possessed cytochrome-c reductase activity, which was stimulated by menadione and ubiquinone Q1. The activity of NAD(P)H and NADH dehydrogenases depended on culture-growth conditions. The activity of NAD(P)H dehydrogenase from cells grown under chemoheterotrophic aerobic conditions was the lowest and it increased notably under photoheterotrophic anaerobic conditions upon lactate or malate growth limitation. The activity of NADH dehydrogenase was higher from the cells grown under photoheterotrophic anaerobic conditions upon nitrate growth limitation and under chemoheterotrophic aerobic conditions. NADPH dehydrogenase synthesis dependence on R. capsulatus growth conditions was insignificant. 相似文献
10.
Use of hupS::lacZ gene fusion to study regulation of hydrogenase expression in Rhodobacter capsulatus: stimulation by H2. 下载免费PDF全文
The Escherichia coli beta-galactosidase enzyme was used as a reporter molecule for genetic fusions in Rhodobacter capsulatus. DNA fragments that were from the upstream region of the hydrogenase structural operon hupSLM and contained 5' hupS sequences were fused in frame to a promoterless lacZ gene, yielding fusion proteins comprising the putative signal sequence and the first 22 amino acids of the HupS protein joined to the eight amino acid of beta-galactosidase. We demonstrate the usefulness of the hupS::lacZ fusion in monitoring regulation of hydrogenase gene expression. The activities of plasmid-determined beta-galactosidase and chromosome-encoded hydrogenase changed in parallel in response to various growth conditions (light or dark, aerobiosis or anaerobiosis, and presence or absence of ammonia or of H2), showing that changes in hydrogenase activity were due to changes in enzyme synthesis. Molecular hydrogen stimulated hydrogenase synthesis in dark, aerobic cultures and in illuminated, anaerobic cultures. Analysis of hupS::lacZ expression in various mutants indicated that neither the hydrogenase structural genes nor NifR4 (sigma 54) was essential for hydrogen regulation of hydrogenase synthesis. 相似文献
11.
Challenge of Rhodobacter capsulatus cells with the superoxide propagator methyl viologen resulted in the induction of a diaphorase activity identified as a member of the ferredoxin (flavodoxin)-(reduced) nicotinamide adenine dinucleotide phosphate (NADP(H)) reductase (FPR) family by N-terminal sequencing. The gene coding for Rhodobacter FPR was cloned and expressed in Escherichia coli. Both native and recombinant forms of the enzyme were purified to homogeneity rendering monomeric products of approximately 30 kDa with essentially the same spectroscopic and kinetic properties. They were able to bind and reduce Rhodobacter flavodoxin (NifF) and to mediate typical FPR activities such as the NADPH-driven diaphorase and cytochrome c reductase. 相似文献
12.
Bortolotti A Pérez-Dorado I Goñi G Medina M Hermoso JA Carrillo N Cortez N 《Biochimica et biophysica acta》2009,1794(2):199-210
Ferredoxin-NADP(H) reductases catalyse the reversible hydride/electron exchange between NADP(H) and ferredoxin/flavodoxin, comprising a structurally defined family of flavoenzymes with two distinct subclasses. Those present in Gram-negative bacteria (FPRs) display turnover numbers of 1-5 s(-1) while the homologues of cyanobacteria and plants (FNRs) developed a 100-fold activity increase. We investigated nucleotide interactions and hydride transfer in Rhodobacter capsulatus FPR comparing them to those reported for FNRs. NADP(H) binding proceeds as in FNRs with stacking of the nicotinamide on the flavin, which resulted in formation of charge-transfer complexes prior to hydride exchange. The affinity of FPR for both NADP(H) and 2'-P-AMP was 100-fold lower than that of FNRs. The crystal structure of FPR in complex with 2'-P-AMP and NADP(+) allowed modelling of the adenosine ring system bound to the protein, whereas the nicotinamide portion was either not visible or protruding toward solvent in different obtained crystals. Stabilising contacts with the active site residues are different in the two reductase classes. We conclude that evolution to higher activities in FNRs was partially favoured by modification of NADP(H) binding in the initial complexes through changes in the active site residues involved in stabilisation of the adenosine portion of the nucleotide and in the mobile C-terminus of FPR. 相似文献
13.
Nogués I Pérez-Dorado I Frago S Bittel C Mayhew SG Gómez-Moreno C Hermoso JA Medina M Cortez N Carrillo N 《Biochemistry》2005,44(35):11730-11740
The photosynthetic bacterium Rhodobacter capsulatus contains a ferredoxin (flavodoxin)-NADP(H) oxidoreductase (FPR) that catalyzes electron transfer between NADP(H) and ferredoxin or flavodoxin. The structure of the enzyme, determined by X-ray crystallography, contains two domains harboring the FAD and NADP(H) binding sites, as is typical of the FPR structural family. The FAD molecule is in a hairpin conformation in which stacking interactions can be established between the dimethylisoalloxazine and adenine moieties. The midpoint redox potentials of the various transitions undergone by R. capsulatus FPR were similar to those reported for their counterparts involved in oxygenic photosynthesis, but its catalytic activity is orders of magnitude lower (1-2 s(-)(1) versus 200-500 s(-)(1)) as is true for most of its prokaryotic homologues. To identify the mechanistic basis for the slow turnover in the bacterial enzymes, we dissected the R. capsulatus FPR reaction into hydride transfer and electron transfer steps, and determined their rates using stopped-flow methods. Hydride exchange between the enzyme and NADP(H) occurred at 30-150 s(-)(1), indicating that this half-reaction does not limit FPR activity. In contrast, electron transfer to flavodoxin proceeds at 2.7 s(-)(1), in the range of steady-state catalysis. Flavodoxin semiquinone was a better electron acceptor for FPR than oxidized flavodoxin under both single turnover and steady-state conditions. The results indicate that one-electron reduction of oxidized flavodoxin limits the enzyme activity in vitro, and support the notion that flavodoxin oscillates between the semiquinone and fully reduced states when FPR operates in vivo. 相似文献
14.
The hupTUV operon is involved in negative control of hydrogenase synthesis in Rhodobacter capsulatus. 下载免费PDF全文
The hupT, hupU, and hupV genes, which are located upstream from the hupSLC and hypF genes in the chromosome of Rhodobacter capsulatus, form the hupTUV operon expressed from the hupT promoter. The hupU and hupV genes, previously thought to belong to a single open reading frame, encode HupU, of 34.5 kDa (332 amino acids), and HupV, of 50.4 kDa (476 amino acids), which are >/= 50% identical to the homologous Bradyrhizobium japonicum HupU and HupV proteins and Rhodobacter sphaeroides HupU1 and HupU2 proteins, respectively; they also have 20 and 29% similarity with the small subunit (HupS) and the large subunit (HupL), respectively, of R. capsulatus [NiFe]hydrogenase. HupU lacks the signal peptide of HupS and HupV lacks the C-terminal sequence of HupL, which are cleaved during hydrogenase processing. Inactivation of hupV by insertional mutagenesis or of hupUV by in-frame deletion led to HupV- and Hup(UV)- mutants derepressed for hydrogenase synthesis, particularly in the presence of oxygen. These mutants were complemented in trans by plasmid-borne hupTUV but not by hupT or by hupUV, except when expressed from the inducible fru promoter. Complementation of the HupV- and Hup(UV)- mutants brought about a decrease in hydrogenase activity up to 10-fold, to the level of the wild-type strain B10, indicating that HupU and HupV participate in negative regulation of hydrogenase expression in concert with HupT, a sensor histidine kinase involved in the repression process. Plasmid-borne gene fusions used to monitor hupTUV expression indicated that the operon is expressed at a low level (50- to 100-fold lower than hupS). 相似文献
15.
Identification and isolation of genes essential for H2 oxidation in Rhodobacter capsulatus. 总被引:1,自引:3,他引:1 下载免费PDF全文
Mutants of Rhodobacter capsulatus unable to grow photoautotrophically with H2 and CO2 were isolated. Those lacking uptake hydrogenase activity as measured by H2-dependent methylene blue reduction were analyzed genetically and used in complementation studies for the isolation of the wild-type genes. Results of further subcloning and transposon Tn5 mutagenesis suggest the involvement of a minimum of five genes. Hybridization to the 2.2-kilobase-pair SstI fragment that lies within the coding region for the large and small subunits of Bradyrhizobium japonicum uptake hydrogenase showed one region of strong homology among the R. capsulatus fragments isolated, which we interpret to mean that one or both structural genes were among the genes isolated. 相似文献
16.
Koh M Meyer TE De Smet L Van Beeumen JJ Cusanovich MA 《Archives of biochemistry and biophysics》2003,410(2):230-237
Steady-state kinetics for the reaction of Rhodobacter capsulatus bacterial cytochrome c peroxidase (BCCP) with its substrate cytochrome c(2) were investigated. The Rb. capsulatus BCCP is dependent on calcium for activation as previously shown for the Pseudomonas aeruginosa BCCP and Paracoccus denitrificans enzymes. Furthermore, the activity shows a bell-shaped pH dependence with optimum at pH 7.0. Enzyme activity is greatest at low ionic strength and drops off steeply as ionic strength increases, resulting in an apparent interaction domain charge product of -13. All cytochromes c(2) show an asymmetric distribution of surface charge, with a concentration of 14 positive charges near the exposed heme edge of Rb. capsulatus c(2) which potentially may interact with approximately 6 negative charges, localized near the edge of the high-potential heme of the Rb. capsulatus BCCP. To test this proposal, we constructed charge reversal mutants of the 14 positively charged residues located on the front face of Rb. capsulatus cytochrome c(2) and examined their effect on steady-state kinetics with BCCP. Mutated residues in Rb. capsulatus cytochrome c(2) that showed the greatest effects on binding and enzyme activity are K12E, K14E, K54E, K84E, K93E, and K99E, which is consistent with the site of electron transfer being located at the heme edge. We conclude that a combination of long-range, nonspecific electrostatic interactions as well as localized salt bridges between, e.g., cytochrome c(2) K12, K14, K54, and K99 with BCCP D194, D241, and D6, account for the observed kinetics. 相似文献
17.
18.
19.
Andreas Jahn Barbara Keuntje Michael Dörffler Werner Klipp Jürgen Oelze 《Applied microbiology and biotechnology》1994,40(5):687-690
In Rhodobacter capsulatus, the hupL gene encoding the large subunit of the uptake-hydrogenase (Hup) enzyme complex was mutated by insertion of an interposon. The mutant neither synthesized an active hydrogenase nor grew photoautotrophically. Under conditions of nitrogen (N) limitation, photoheterotrophic cultures of the wild type and the mutant evolved H2 by activity of the nitrogenase enzyme complex. When grown with glutamate as an N source and either d,l-malate or l-lactate as carbon sources, the efficiency of H2 production by the HupL mutant was higher than 90%, whereas wild-type cultures exhibited efficiencies of 54% (with d,l-malate) and 64% (with l-lactate), respectively. With NH
inf4
sup+
as the N source, efficiencies of H2 production were 70% (mutant) and 52% (wild type).
Correspondence to: J. Oelze 相似文献