首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hanna Jansson 《BBA》2008,1777(9):1116-1121
The electron transfer from wild-type spinach plastocyanin (Pc) to photosystem 1 has been studied by flash-induced absorption changes at 830 nm. The decay kinetics of photo-oxidized P700 are drastically slower in the presence of Ag(I)-substituted Pc, while addition of Zn(II)-substituted Pc has a weaker effect. The metal-substituted forms of Pc act as competitive inhibitors of the reaction between normal, Cu-containing, Pc and P700. The inhibition constants obtained from an analysis of the kinetic data were 30 and 410 μM for Ag(I)- and Zn(II)-substituted Pc, respectively. When the Gly8Asp mutant form of Pc was used instead of the wild-type form, the corresponding values were found to be 77 and 442 μM. If the Ag- and Zn-derivatives can be considered as structural mimics of reduced and oxidized CuPc, respectively, our results imply that there is a redox-induced decrease in the affinity between Pc and photosystem 1 that follows the electron donation to P700. Our data also imply that the Gly8Asp mutation can diminish the magnitude of this change. The findings reported here are consistent with a reaction mechanism where the electron transfer in the complex between Pc and photosystem 1 is assumed to be reversible.  相似文献   

2.
An electrometric technique was used to investigate electron transfer between spinach plastocyanin (Pc) and photooxidized primary electron donor P700 in photosystem I (PS I) complexes from the cyanobacterium Synechocystis sp. PCC 6803. In the presence of Pc, the fast unresolvable kinetic phase of membrane potential generation related to electron transfer between P700 and the terminal iron–sulfur acceptor FB was followed by additional electrogenic phases in the microsecond and millisecond time scales, which contribute approximately 20% to the overall electrogenicity. These phases are attributed to the vectorial electron transfer from Pc to the protein-embedded chlorophyll dimer P700+ within the PsaA/PsaB heterodimer. The observed rate constant of the millisecond kinetic phase exhibited a saturation profile at increasing Pc concentration, suggesting the formation of a transient complex between Pc and PS I with the dissociation constant Kd of about 80 μM. A small but detectable fast electrogenic phase was observed at high Pc concentration. The rate constant of this phase was independent of Pc concentration, indicating that it is related to a first-order process.  相似文献   

3.
The effects of two molecular forms of water-soluble ferredoxin (Fd I and Fd II) on the kinetics of electron transport in bean chloroplasts (class B) were studied. The light-induced redox transitions of the photosystem I reaction center P700 were measured by the intensity of the EPR signal I produced by P700+. Both forms of ferredoxin, Fd I and Fd II, when added to the chloroplasts in catalytic amounts, stimulate the light-induced electron transfer from P700 to NADP+. Nevertheless, Fd I is a better mediator of the back reactions from NADPH to P700+. This electron transfer pathway is sensitive to the cyclic electron transport inhibitor, antimycin A, and to DCMU inhibitor of electron transport between photosystem II and plastoquinone. It may be concluded that the two molecular forms of ferredoxin, Fd I and Fd II, differ in their ability to catalyze cyclic electron transport in photosystem I. The role of Fd I and Fd II in regulation of electron transport at the acceptor site of photosystem I is discussed.  相似文献   

4.
In this work, we investigated electron transport processes in the cyanobacterium Synechocystis sp. PCC 6803, with a special emphasis focused on oxygen-dependent interrelations between photosynthetic and respiratory electron transport chains. Redox transients of the photosystem I primary donor P700 and oxygen exchange processes were measured by the EPR method under the same experimental conditions. To discriminate between the factors controlling electron flow through photosynthetic and respiratory electron transport chains, we compared the P700 redox transients and oxygen exchange processes in wild type cells and mutants with impaired photosystem II and terminal oxidases (CtaI, CydAB, CtaDEII). It was shown that the rates of electron flow through both photosynthetic and respiratory electron transport chains strongly depended on the transmembrane proton gradient and oxygen concentration in cell suspension. Electron transport through photosystem I was controlled by two main mechanisms: (i) oxygen-dependent acceleration of electron transfer from photosystem I to NADP(+), and (ii) slowing down of electron flow between photosystem II and photosystem I governed by the intrathylakoid pH. Inhibitor analysis of P700 redox transients led us to the conclusion that electron fluxes from dehydrogenases and from cyclic electron transport pathway comprise 20-30% of the total electron flux from the intersystem electron transport chain to P700(+).  相似文献   

5.
We have used several docking algorithms (GRAMM, FTDOCK, DOT, AUTODOCK) to examine protein-protein interactions between plastocyanin (Pc)/photosystem I (PSI) in the electron transfer reaction. Because of the large size and complexity of this system, it is faster and easier to use computer simulations than conduct x-ray crystallography or nuclear magnetic resonance experiments. The main criterion for complex selection was the distance between the copper ion of Pc and the P700 chlorophyll special pair. Additionally, the unique tyrosine residue (Tyr(12)) of the hydrophobic docking surface of Prochlorothrix hollandica Pc yields a specific interaction with the lumenal surface of PSI, thus providing the second constraint for the complex. The structure that corresponded best to our criteria was obtained by the GRAMM algorithm. In this structure, the solvent-exposed histidine that coordinates copper in Pc is at the van der Waals distance from the pair of stacked tryptophans that separate the chlorophylls from the solvent, yielding the shortest possible metal-to-metal distance. The unique tyrosine on the surface of the Prochlorothrix Pc hydrophobic patch also participates in a hydrogen bond with the conserved Asn(633) of the PSI PsaB polypeptide (numbering from the Synechococcus elongatus crystal structure). Free energy calculations for complex formation with wild-type Pc, as well as the hydrophobic patch Tyr(12)Gly and Pro(14)Leu Pc mutants, were carried out using a molecular mechanics Poisson-Boltzman, surface area approach (MM/PBSA). The results are in reasonable agreement with our experimental studies, suggesting that the obtained structure can serve as an adequate model for P. hollandica Pc-PSI complex that can be extended for the study of other cyanobacterial Pc/PSI reaction pairs.  相似文献   

6.
In this work, we investigated electron transport processes in the cyanobacterium Synechocystis sp. PCC 6803, with a special emphasis focused on oxygen-dependent interrelations between photosynthetic and respiratory electron transport chains. Redox transients of the photosystem I primary donor P700 and oxygen exchange processes were measured by the EPR method under the same experimental conditions. To discriminate between the factors controlling electron flow through photosynthetic and respiratory electron transport chains, we compared the P700 redox transients and oxygen exchange processes in wild type cells and mutants with impaired photosystem II and terminal oxidases (CtaI, CydAB, CtaDEII). It was shown that the rates of electron flow through both photosynthetic and respiratory electron transport chains strongly depended on the transmembrane proton gradient and oxygen concentration in cell suspension. Electron transport through photosystem I was controlled by two main mechanisms: (i) oxygen-dependent acceleration of electron transfer from photosystem I to NADP+, and (ii) slowing down of electron flow between photosystem II and photosystem I governed by the intrathylakoid pH. Inhibitor analysis of P700 redox transients led us to the conclusion that electron fluxes from dehydrogenases and from cyclic electron transport pathway comprise 20-30% of the total electron flux from the intersystem electron transport chain to P700+.  相似文献   

7.
Electron transfer from plastocyanin to photosystem I.   总被引:9,自引:3,他引:6       下载免费PDF全文
Mutant plastocyanins with Leu at position 10, 90 or 83 (Gly, Ala and Tyr respectively in wildtype) were constructed by site-specific mutagenesis of the spinach gene, and expressed in transgenic potato plants under the control of the authentic plastocyanin promoter, as well as in Escherichia coli as truncated precursor intermediates carrying the C-terminal 22 amino acid residues of the transit peptide, i.e. the thylakoid-targeting domain that acts as a bacterial export signal. The identity of the purified plastocyanins was verified by matrix-assisted laser desorption/ionization mass spectrometry. The formation of a complex between authentic or mutant spinach plastocyanin and isolated photosystem I and the electron transfer has been studied from the biphasic reduction kinetics of P700+ after excitation with laser flashes. The formation of the complex was abolished by the bulky hydrophobic group of Leu at the respective position of G10 or A90 which are part of the conserved flat hydrophobic surface around the copper ligand H87. The rate of electron transfer decreased by both mutations to < 20% of that found with wildtype plastocyanin. We conclude that the conserved flat surface of plastocyanin represents one of two crucial structural elements for both the docking at photosystem I and the efficient electron transfer via H87 to P700+. The Y83L mutant exhibited faster electron transfer to P700+ than did authentic plastocyanin. This proves that Y83 is not involved in electron transfer to P700 and suggests that electron transfer from cytochrome f and to P700 follows different routes in the plastocyanin molecule. Plastocyanin (Y83L) expressed in either E. coli or potato exhibited different isoelectric points and binding constants to photosystem I indicative of differences in the folding of the protein. The structure of the binding site at photosystem I and the mechanism of electron transfer are discussed.  相似文献   

8.
The dependence of the P(700)(+)/P(700) midpoint potential on kinetics of reduction of P(700)(+) in vivo has been examined in a series of site-directed mutants of Chlamydomonas reinhardtii in which the histidyl axial ligand to the Mg(2+) of the P(700) chlorophyll a has been changed to several different amino acids. In wild-type photosystem I, the potential of P(700)(+)/P(700) is 447 mV and the in vivo half-time of P(700)(+) reduction by its natural donor, plastocyanin, is 4 micros. Substitution of the axial histidine ligand with cysteine increases the potential of P(700)(+)/P(700) to 583 mV and changes the rate of P(700)(+) reduction to 0.8 micros. Mutants with a range of potentials between 447 and 583 mV show a strong correlation of the P(700)(+)/P(700) potential to the rate of reduction of P(700)(+) by plastocyanin. There is also an increase in the rate of photosystem I-mediated electron transfer from the artificial electron donor DCPIP to methyl viologen in thylakoid membranes. The results indicate that the overall rate constant of P(700)(+) reduction is determined by the rate of electron transfer between the copper and P(700)(+) and confirmed that in vivo there is a preformed complex between plastocyanin and photosystem I. Using approximations of the Marcus electron transfer theory, it is possible to estimate that the distance between the copper of plastocyanin and P(700)(+) is approximately 15 A. On the basis of this distance, the plastocyanin docking site should lie in a 10 A hollow formed by the lumenal exposed loops between transmembrane helices i and j of PsaA and PsaB.  相似文献   

9.
Recent studies of chloroplast architecture have emphasized the segregation of photosystem I and photosystem II in different regions of the lamellar membrane. The apparent localization of photosystem II reaction centers in regions of membrane appression and of photosystem I reaction centers in regions exposed to the chloroplast stroma has focused attention on the intervening electron carriers, carriers which must be present to catalyze electron transfer between such spatially separated reaction sites. Information regarding the stoichiometries of these intermediate carriers is essential to an understanding of the processes that work together to establish the mechanism and to determine the rate of the overall process. We have reinvestigated the numbers of photosystem I and photosystem II reaction centers, the numbers of intervening cytochrome b6/f complexes, and the numbers of molecules of the relatively mobile electron carriers plastoquinone and plastocyanin that are actively involved in electron transfer. Our investigations were based on a new experimental technique made possible by the use of a modified indophenol dye, methyl purple, the reduction of which provides a particularly sensitive and accurate measure of electron transfer. Using this dye, which accepts electrons exclusively from photosystem I, it was possible to drain electrons from each of the carriers. Thus, by manipulation of the redox condition of the various carriers and through the use of specific inhibitors we could measure the electron storage capacity of each carrier in turn. We conclude that the ratio of photosystem I reaction centers to cytochrome b6/f complexes to photosystem II reaction centers is very nearly 1:1:1. The pool of rapid donors of electrons to P700 includes not only the 2 reducing equivalents stored in the cytochrome b6/f complex but also those stored in slightly more than 2 molecules of plastocyanin per P700. More slowly available are the electrons from about 6 plastoquinol molecules per P700.  相似文献   

10.
The rubA gene was insertionally inactivated in Synechococcus sp. PCC 7002, and the properties of photosystem I complexes were characterized spectroscopically. X-band EPR spectroscopy at low temperature shows that the three terminal iron-sulfur clusters, F(X), F(A), and F(B), are missing in whole cells, thylakoids, and photosystem (PS) I complexes of the rubA mutant. The flash-induced decay kinetics of both P700(+) in the visible and A(1)- in the near-UV show that charge recombination occurs between P700(+) and A(1)- in both thylakoids and PS I complexes. The spin-polarized EPR signal at room temperature from PS I complexes also indicates that forward electron transfer does not occur beyond A(1). In agreement, the spin-polarized X-band EPR spectrum of P700(+) A(1)- at low temperature shows that an electron cycle between A(1)- and P700(+) occurs in a much larger fraction of PS I complexes than in the wild-type, wherein a relatively large fraction of the electrons promoted are irreversibly transferred to [F(A)/F(B)]. The electron spin polarization pattern shows that the orientation of phylloquinone in the PS I complexes is identical to that of the wild type, and out-of-phase, spin-echo modulation spectroscopy shows the same P700(+) to A(1)- center-to-center distance in photosystem I complexes of wild type and the rubA mutant. In contrast to the loss of F(X), F(B), and F(A), the Rieske iron-sulfur protein and the non-heme iron in photosystem II are intact. It is proposed that rubredoxin is specifically required for the assembly of the F(X) iron-sulfur cluster but that F(X) is not required for the biosynthesis of trimeric P700-A(1) cores. Since the PsaC protein requires the presence of F(X) for binding, the absence of F(A) and F(B) may be an indirect result of the absence of F(X).  相似文献   

11.
The excitation transport and trapping kinetics of core antenna-reaction center complexes from photosystem I of wild-type Synechocystis sp. PCC 6803 were investigated under annihilation-free conditions in complexes with open and closed reaction centers. For closed reaction centers, the long-component decay-associated spectrum (DAS) from global analysis of absorption difference spectra excited at 660 nm is essentially flat (maximum amplitude <10(-5) absorbance units). For open reaction centers, the long-time spectrum (which exhibits photobleaching maxima at approximately 680 and 700 nm, and an absorbance feature near 690 nm) resembles one previously attributed to (P700(+) - P700). For photosystem I complexes excited at 660 nm with open reaction centers, the equilibration between the bulk antenna and far-red chlorophylls absorbing at wavelengths >700 nm is well described by a single DAS component with lifetime 2.3 ps. For closed reaction centers, two DAS components (2.0 and 6.5 ps) are required to fit the kinetics. The overall trapping time at P700 ( approximately 24 ps) is very nearly the same in either case. Our results support a scenario in which the time constant for the P700 --> A(0) electron transfer is 9-10 ps, whereas the kinetics of the subsequent A(0) --> A(1) electron transfer are still unknown.  相似文献   

12.
Kinetics of the redox reactions in the reaction center (P700) of photosystem I (PSI) of the cyanobacterium Synechocystis sp. PCC 6803 have been studied by EPR spectroscopy. The redox kinetics were recorded based on accumulation of the EPRI signal when the final signal was the sum of individual signals produced in response to illumination of the cells. After prolonged (more than 3 sec) dark intervals between illuminations, the kinetic curve of the EPR signal from P700+ was multiphasic. After a sharp increase in the signal amplitude at the beginning of illumination (phase I), the amplitude rapidly (for 0.1-0.2 sec) decreased (phase II). Then the signal amplitude gradually increased (phase III) until the steady rate of electron transfer was established. With short-term (1 sec) dark intervals between the flashes and also in the presence of 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU), the kinetics of the light-induced increase in the EPR signal from P700+ were monophasic. Inhibition with iodoacetamide of electron transport on the acceptor side of PSI under anaerobic conditions or an increase in the amount of respiration substrates on addition of glucose into a suspension of DCMU-treated wild-type cells increased the level of P700 reduction in phase III. The findings suggest that the kinetic curve of the EPR signal from P700+ is determined by both the electron entrance onto P700+ on the donor side of PSI and activity of electron acceptors of PSI.  相似文献   

13.
The psbZ gene of Synechocystis sp. PCC 6803 encodes the ∼6.6 kDa photosystem II (PSII) subunit. We here report biophysical, biochemical and in vivo characterization of Synechocystis sp. PCC 6803 mutants lacking psbZ. We show that these mutants are able to perform wild-type levels of light-harvesting, energy transfer, PSII oxygen evolution, state transitions and non-photochemical quenching (NPQ) under standard growth conditions. The mutants grow photoautotrophically; however, their growth rate is clearly retarded under low-light conditions and they are not capable of photomixotrophic growth. Further differences exist in the electron transfer properties between the mutants and wild type. In the absence of PsbZ, electron flow potentially increased through photosystem I (PSI) without a change in the maximum electron transfer capacity of PSII. Further, rereduction of P700+ is much faster, suggesting faster cyclic electron flow around PSI. This implies a role for PsbZ in the regulation of electron transfer, with implication for photoprotection.  相似文献   

14.
Electron transfer rates to P700+ have been determined in wild-type and three interposon mutants (psaE-, ndhF-, and psaE- ndhF-) of Synechococcus sp. PCC 7002. All three mutants grew significantly more slowly than wild type at low light intensities, and each failed to grow photoheterotrophically in the presence of 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) and a metabolizable carbon source. The kinetics of P700+ reduction were similar in the wild-type and mutant whole cells in the absence of DCMU. In the presence of DCMU, the P700+ reduction rate in the psaE mutant was significantly slower than in the wild type. In the presence of DCMU and potassium cyanide, added to inhibit the outflow of electrons through cytochrome oxidase, P700+ reduction rates increased for both the psaE- and ndhF- strains. The reduction rates for these two mutants were nonetheless slower than that observed for the wild-type strain. The further addition of methyl viologen caused the rate of P700+ reduction in the wild type to become as slow as that for the psaE mutant in the absence of methyl viologen. Given the ability of methyl viologen to intercept electrons from the acceptor side of photosystem I, this response reveals a lesion in cyclic electron flow in the psaE mutant. In the presence of DCMU, the rate of P700+ reduction in the psaE ndhF double mutant was very slow and nearly identical with that for the wild-type strain in the presence of 2,4-dibromo-3-methyl-6-isopropyl-p-benzoquinone, a condition under which physiological electron donation to P700+ should be completely inhibited. These results suggest that NdhF- and PsaE-dependent electron donation to P700+ occurs only via plastoquinone and/or cytochrome b6/f and indicate that there are three major electron sources for P700+ reduction in this cyanobacterium. We conclude that, although PsaE is not required for linear electron flow to NADP+, it is an essential component in the cyclic electron transport pathway around photosystem I.  相似文献   

15.
16.
High-frequency, high-field EPR at 330 GHz was used to study the photo-oxidized primary donor of photosystem I (P(700)(+)(*)) in wild-type and mutant forms of photosystem I in the green alga Chlamydomonas reinhardtii. The main focus was the substitution of the axial ligand of the chlorophyll a and chlorophyll a' molecules that form the P(700) heterodimer. Specifically, we examined PsaA-H676Q, in which the histidine axial ligand of the A-side chlorophyll a' (P(A)) is replaced with glutamine, and PsaB-H656Q, with a similar replacement of the axial ligand of the B-side chlorophyll a (P(B)), as well as the double mutant (PsaA-H676Q/PsaB-H656Q), in which both axial ligands were replaced. We also examined the PsaA-T739A mutant, which replaces a threonine residue hydrogen-bonded to the 13(1)-keto group of P(A) with an alanine residue. The principal g-tensor components of the P(700)(+)(*) radical determined in these mutants and in wild-type photosystem I were compared with each other, with the monomeric chlorophyll cation radical (Chl(z)(+)(*)) in photosystem II, and with recent theoretical calculations for different model structures of the chlorophyll a(+) cation radical. In mutants with a modified P(B) axial ligand, the g(zz) component of P(700)(+)(*) was shifted down by up to 2 x 10(-4), while mutations near P(A) had no significant effect. We discuss the shift of the g(zz) component in terms of a model with a highly asymmetric distribution of unpaired electron spin in the P(700)(+)(*) radical cation, mostly localized on P(B), and a deviation of the P(B) chlorophyll structure from planarity due to the axial ligand.  相似文献   

17.
The photosystem (PS) I photosynthetic reaction center was modified thorough the selective extraction and exchange of chlorophylls and quinones. Extraction of lyophilized photosystem I complex with diethyl ether depleted more than 90% chlorophyll (Chl) molecules bound to the complex, preserving the photochemical electron transfer activity from the primary electron donor P700 to the acceptor chlorophyll A(0). The treatment extracted all the carotenoids and the secondary acceptor phylloquinone (A(1)), and produced a PS I reaction center that contains nine molecules of Chls including P700 and A(0), and three Fe-S clusters (F(X), F(A) and F(B)). The ether-extracted PS I complex showed fast electron transfer from P700 to A(0) as it is, and to FeS clusters if phylloquinone or an appropriate artificial quinone was reconstituted as A(1). The ether-extracted PS I enabled accurate detection of the primary photoreactions with little disturbance from the absorbance changes of the bulk pigments. The quinone reconstitution created the new reactions between the artificial cofactors and the intrinsic components with altered energy gaps. We review the studies done in the ether-extracted PS I complex including chlorophyll forms of the core moiety of PS I, fluorescence of P700, reaction rate between A(0) and reconstituted A(1), and the fast electron transfer from P700 to A(0). Natural exchange of chlorophyll a to 710-740 nm absorbing chlorophyll d in PS I of the newly found cyanobacteria-like organism Acaryochloris marina was also reviewed. Based on the results of exchange studies in different systems, designs of photosynthetic reaction centers are discussed.  相似文献   

18.
Barth C  Krause GH 《Planta》2002,216(2):273-279
Nicotiana tabacum L. wild-type plants and transformants (DeltandhCKJ), deficient in functional NAD(P)H dehydrogenase (NDH), were subjected to high light at 20 degrees C and 4 degrees C for 2 h to examine a possible role of NDH-mediated cyclic electron flow in protecting photosystems I and II from photoinhibition. Photochemical activity of photosystem I (PSI) was assessed by means of P700 absorbance changes at 810 nm. In addition, potential photosystem II (PSII) efficiency was determined by measuring the 'dark-adapted' ratio of variable to maximum chlorophyll fluorescence, F(v)/ F(m). Both photosystems were more susceptible to photoinhibition at 4 degrees C than at 20 degrees C. However, the degree of photoinhibition was not less in the wild type than in the NDH-deficient plants. To evaluate the efficiency of P700 oxidation in far-red light, a saturation constant, K(s), was determined, representing the far-red irradiance at which half of the maximum P700 absorbance change was reached. In photoinhibited leaves, a decrease in the efficiency of P700 oxidation (increase in K(s)) was observed. The increase in K(s) was more pronounced at 4 degrees C than at 20 degrees C, but not significantly different between wild-type and DeltandhCKJ plants. Re-reduction kinetics of oxidised P700 in the dark were accelerated to a similar extent in photoinhibited samples of both genotypes and at the two temperatures tested. The data indicate that NDH-mediated cyclic electron flow does not protect PSI against short-term light stress. It is proposed that the observed increase in K(s) represents a protective mechanism that is based on accelerated charge recombination in PSI and facilitates thermal dissipation of excessive light energy.  相似文献   

19.
The decay of the light-induced spin-correlated radical pair [P700+ A1-] and the associated electron spin echo envelope modulation (ESEEM) have been studied in either thylakoid membranes, cellular membranes, or purified photosystem I prepared from the wild-type strains of Synechocystis sp. PCC 6803, Chlamydomonas reinhardtii, and Spinaceae oleracea. The decay of the spin-correlated radical pair is described in the wild-type membrane by two exponential components with lifetimes of 2-4 and 16-25 micros. The proportions of the two components can be altered by preillumination of the membranes in the presence of reductant at temperatures lower than 220 K, which leads to the complete reduction of the iron-sulfur electron acceptors F(A), F(B), and F(X) and partial photoaccumulation of the reduced quinone electron acceptor A1A-. The "out-of-phase" (OOP) ESEEM attributed to the [P700+ A1-] radical pair has been investigated in the three species as a function of the preillumination treatment. Values of the dipolar (D) and the exchange (J) interactions were extracted by time-domain fitting of the OOP-ESEEM. The results obtained in the wild-type systems are compared with two site-directed mutants of C. reinhardtii [Santabarbara et al. (2005) Biochemistry 44, 2119-2128], in which the spin-polarized signal on either the PsaA- or PsaB-bound electron transfer pathway is suppressed so that the radical pair formed on each electron transfer branch could be monitored selectively. This comparison indicates that when all of the iron-sulfur centers are oxidized, only the echo modulation associated with the A branch [P700+ A1A-] radical pair is observed. The reduction of the iron-sulfur clusters and the quinone A1 by preillumination treatment induces a shift in the ESEEM frequency. In all of the systems investigated this observation can be interpreted in terms of different proportions of the signal associated with the [P700+ A1A-] and [P700+ A1B-] radical pairs, suggesting that bidirectionality of electron transfer in photosystem I is a common feature of all species rather than being confined to green algae.  相似文献   

20.
L B Smart  S L Anderson    L McIntosh 《The EMBO journal》1991,10(11):3289-3296
We describe the first complete segregation of a targeted inactivation of psaA encoding one of the P700-chlorophyll a apoproteins of photosystem (PS) I. A kanamycin resistance gene was used to interrupt the psaA gene in the unicellular cyanobacterium Synechocystis sp. PCC 6803. Selection of a fully segregated mutant, ADK9, was performed under light-activated heterotrophic growth (LAHG) conditions; complete darkness except for 5 min of light every 24 h and 5 mM glucose. Under these conditions, wild-type cells showed a 4-fold decrease in chlorophyll (chl) per cell, primarily due to a decrease of PS I reaction centers. Evidence for the absence of PS I in ADK9 includes: the lack of EPR (electron paramagnetic resonance) signal I, from P700+; undetectable P700-apoprotein; greatly reduced whole-chain photosynthesis rates; and greatly reduced chl per cell, resulting in a turquoise blue phenotype. The PS I peripheral proteins PSA-C and PSA-D were not detected in this mutant. ADK9 does assemble near wild-type levels of functional PS II per cell, evidenced by: EPR signal II from YD+; high rates of oxygen evolution with 2,6-dichloro-p-benzoquinone (DCBQ), an electron acceptor from PS II; and accumulation of D1, a PS II core polypeptide. The success of this transformation indicates that this cyanobacterium may be utilized for site-directed mutagenesis of the PS I core.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号