首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The venom composition of Pseudechis australis, a widely distributed in Australia reptile, was analyzed by 2-DE and mass spectrometric analysis. In total, 102 protein spots were identified as venom toxins. The gel is dominated by horizontal trains of spots with identical or very similar molecular masses but differing in the pI values. This suggests possible post-translational modifications of toxins, changing their electrostatic charge. The results demonstrate a highly specialized biosynthesis of toxins destroying the hemostasis (P-III metalloproteases, SVMPs), antimicrobial proteins (L-amino acid oxidases, LAAOs, and transferrin-like proteins, TFLPs), and myotoxins (phospholipase A(2)s, PLA(2)s). The three transferrin isoforms of the Australian P. australis (Elapidae snake) venom are highly homologous to the body transferrin of the African Lamprophis fuliginosus (Colubridae), an indication for the recruitment of body transferrin. The venomic composition suggests an adaptation for a defense against microbial pathogens from the prey. Transferrins have not previously been reported as components of elapid or other snake venoms. Ecto-5'-nucleotidases (5'-NTDs), nerve growth factors (VNGFs), and a serine proteinase inhibitor (SPI) were also identified. The venom composition and enzymatic activities explain the clinical manifestation of the king brown snakebite. The results can be used for medical, scientific, and biotechnological purposes.  相似文献   

3.
We analyzed the origin and evolution of snake venom toxin families represented in both viperid and elapid snakes by means of phylogenetic analysis of the amino acid sequences of the toxins and related nonvenom proteins. Out of eight toxin families analyzed, five provided clear evidence of recruitment into the snake venom proteome before the diversification of the advanced snakes (Kunitz-type protease inhibitors, CRISP toxins, galactose-binding lectins, M12B peptidases, nerve growth factor toxins), and one was equivocal (cystatin toxins). In two others (phospholipase A(2) and natriuretic toxins), the nonmonophyly of venom toxins demonstrates that presence of these proteins in elapids and viperids results from independent recruitment events. The ANP/BNP natriuretic toxins are likely to be basal, whereas the CNP/BPP toxins are Viperidae only. Similarly, the lectins were recruited twice. In contrast to the basal recruitment of the galactose-binding lectins, the C-type lectins were shown to be Viperidae only, with the alpha-chains and beta-chains resulting from an early duplication event. These results provide strong additional evidence that venom evolved once, at the base of the advanced snake radiation, rather than multiple times in different lineages, with these toxins also present in the venoms of the "colubrid" snake families. Moreover, they provide a first insight into the composition of the earliest ophidian venoms and point the way toward a research program that could elucidate the functional context of the evolution of the snake venom proteome.  相似文献   

4.
5.
6.
7.
8.
间斑寇蛛Latrodectus tredecimguttatus俗称"黑寡妇"蜘蛛。其毒素不仅存在于毒腺中,而且存在于其身体的其他部分、卵粒甚至新生幼蛛体内。研究间斑寇蛛毒腺和毒腺外材料中的毒素成分,探明它们之间的异同、进化关系和生物学作用,具有重要的理论和实际意义。现代蛋白质化学和蛋白质组学技术的发展为间斑寇蛛蛋白质和多肽毒素的研究提供了有效手段,从而可以同时从单一纯化蛋白质和组学的层面探究毒素作用的分子基础和作用机制。到目前为止,间斑寇蛛毒素的蛋白质化学与蛋白质组学研究已取得一定的进展,但相关研究尤其是毒腺外材料来源的毒素研究还有待进一步深入。  相似文献   

9.
Brown spider (Loxosceles genus) venom causes necrotic lesions often accompanied by fever, hemolysis, thrombocytopenia, and acute renal failure. Using mice exposed to Loxosceles intermedia venom, we aimed to show whether the venom directly induces renal damage. The experimental groups were composed of 50 mice as controls and 50 mice that received the venom. Light microscopic analysis of renal biopsy specimens showed alterations including hyalinization of proximal and distal tubules, erythrocytes in Bowman's space, glomerular collapse, tubule epithelial cell blebs and vacuoles, interstitial edema, and deposition of eosinophilic material in the tubule lumen. Electron microscopic findings indicated changes including glomerular epithelial and endothelial cell cytotoxicity as well as disorders of the basement membrane. Tubule alterations include epithelial cell cytotoxicity with cytoplasmic membrane blebs, mitochondrial changes, increase in smooth endoplasmic reticulum, presence of autophagosomes, and deposits of amorphous material in the tubules. We also found that the venom caused azotemia with elevation of blood urea levels but did not decrease C3 complement concentration or cause hemolysis in vivo. Confocal microscopy with antibodies against venom proteins showed direct binding of toxins to renal structures, confirmed by competition assays. Double-staining immunofluorescence reactions with antibodies against type IV collagen or laminin, antibodies to venom toxins, and fluorescent cytochemistry with DAPI revealed deposition of toxins in glomerular and tubule epithelial cells and in renal basement membranes. Two-dimensional electrophoresis showed venom rich in low molecular mass and cationic toxins. By immunoblotting with antibodies to venom toxins on renal extracts from venom-treated mice, we detected a renal binding toxin at 30 kD. The data provide experimental evidence that L. intermedia venom is directly involved in nephrotoxicity.  相似文献   

10.
11.
Brown spider (Genus Loxosceles) bites are normally associated with necrotic skin degeneration, gravitational spreading, massive inflammatory response at injured region, platelet aggregation causing thrombocytopenia and renal disturbances. Brown spider venom has a complex composition containing many different toxins, of which a well-studied component is the dermonecrotic toxin. This toxin alone may produce necrotic lesions, inflammatory response and platelet aggregation. Biochemically, dermonecrotic toxin belongs to a family of toxins with 30-35 kDa characterized as sphingomyelinase-D. Here, employing a cDNA library of Loxosceles intermedia venom gland, we cloned and expressed two recombinant isoforms of the dermonecrotic toxin LiRecDT2 (1062 bp cDNA) and LiRecDT3 (1007 bp cDNA) that encode for signal peptides and complete mature proteins. Phylogenetic tree analysis revealed a structural relationship for these toxins compared to other members of family. Recombinant molecules were expressed as N-terminal His-tag fusion proteins in Escherichia coli and were purified to homogeneity from cell lysates by Ni(2+) chelating chromatography, resulting in proteins of 33.8 kDa for LiRecDT2 and 34.0 kDa for LiRecDT3. Additional evidence for related toxins containing sequence/epitopes identity comes from antigenic cross-reactivity using antibodies against crude venom toxins and antibodies raised with a purified dermonecrotic toxin. Recombinant toxins showed differential functionality in rabbits: LiRecDT2 caused a macroscopic lesion with gravitational spreading upon intradermal injection, while LiRecDT3 evoked transient swelling and erythema upon injection site. Light microscopic analysis of skin biopsies revealed edema, a collection of inflammatory cells in and around blood vessels and a proteinaceous network at the dermis. Moreover, differential functionality for recombinant toxins was also demonstrated by a high sphingomyelinase activity for LiRecDT2 and low activity for LiRecDT3 as well as greater in vitro platelet aggregation and blood vessel permeability induced by LiRecDT2 and residual activity for LiRecDT3. Cloning and expression of two recombinant dermonecrotic toxins demonstrate an intraspecific family of homologous toxins that act in synergism for deleterious activities of the venom and open possibilities for biotechnological applications for recombinant toxins as research tools for understanding the inflammatory response, vascular integrity and platelet aggregation modulators.  相似文献   

12.
13.
Facilitation of transmitter release by neurotoxins from snake venoms   总被引:1,自引:0,他引:1  
Toxins C13S1C3 and C13S2C3 from green mamba venom (Dendroaspis angusticeps) acted like dendrotoxin to increase acetylcholine release in response to nerve stimulation in the chick biventer cervicis preparation. Proteins B and E from black mamba venom (Dendroaspis polylepis) had no prejunctional facilitatory activity. All four proteins are trypsin inhibitor homologues. Binding of a prejunctional facilitatory toxin (Polylepis toxin I) to motor nerves was rapid and did not require the presence of Ca2+ or nerve stimulation. Binding was not prevented by protease inhibitors that lacked facilitatory actions. Prejunctional facilitatory toxins also augmented transmitter release in the chick oesophagus and the mouse vas deferens preparations. The effects were rapid in onset and could wane spontaneously. 125I-labelled dendrotoxin bound specifically to rat brain synaptosomes with a KD of about 3 nM. Binding was prevented by native dendrotoxin but not by beta-bungarotoxin or atropine. It is concluded that prejunctional facilitatory toxins affect transmitter release at many types of nerve endings in addition to motor nerve terminals. From consideration of the structures of active and inactive molecules, it is thought that binding of the active toxins may involve several exposed lysine residues.  相似文献   

14.
15.
Conotoxins, venom peptides from marine cone snails, diversify rapidly as speciation occurs. It has been suggested that each species can synthesize between 1000 and 1900 different toxins with little to no interspecies overlap. Conotoxins exhibit an unprecedented degree of post-translational modifications, the most common one being the formation of disulfide bonds. Despite the great diversity of structurally complex peptides, little is known about the glandular proteins responsible for their biosynthesis and maturation. Here, proteomic interrogations on the Conus venom gland led to the identification of novel glandular proteins of potential importance for toxin synthesis and secretion. A total of 161 and 157 proteins and protein isoforms were identified in the venom glands of Conus novaehollandiae and Conus victoriae, respectively. Interspecies differences in the venom gland proteomes were apparent. A large proportion of the proteins identified function in protein/peptide translation, folding, and protection events. Most intriguingly, however, we demonstrate the presence of a multitude of isoforms of protein disulfide isomerase (PDI), the enzyme catalyzing the formation and isomerization of the native disulfide bond. Investigating whether different PDI isoforms interact with distinct toxin families will greatly advance our knowledge on the generation of cone snail toxins and disulfide-rich peptides in general.  相似文献   

16.
Aipysurus laevis venom was chromatographed on CM-cellulose and Bio-Rex 70 columns. Three neurotoxic components, toxins Aipysurus laevis a, b and c, were isolated. The toxins a, b and c corresponded to 22, 33 and 21% respectively of the proteins in the original venom, and accounted for almost all the lethal activity of the venom. The three toxins a, b and c were monodisperse on disc electrophoresis at pH4; toxins a and b moved at the same velocity and c a little faster. They were monodisperse also on sodium dodecyl sulphate-polyacrylamide-disc-gel electrophoresis, giving a molecular weight of 7600. The molecular weight of toxin b estimated by gel filtration was 7000. The amino acid sequence analyses of these toxins revealed that they consisted of 60 amino acid residues and that Aipysurus laevis b was [25-methionine, 28-arginine] Aipysurus laevis a. Aipysurus laevis c was [28-lysine] Aipysurus laevis a, the tryptic peptide sequence relying on homology. The LD50 values of these toxins for 20g mice were 0.076 mug/g body wt. They inhibited the acetylcholine-induced contracture but did not affect the CKl-induced contracture of the isolated muscle.  相似文献   

17.
Two lethal proteins, which specifically bind to the nAChR from Torpedo californica, were isolated from the venom of Pseudonaja textilis, the common brown snake from Australia. The isolated proteins have masses of 6236 and 6345 Da and are structurally related to short-chain neurotoxins from other elapids. Six cDNAs encoding isoforms of related neurotoxins were cloned using the RT-PCR of the venom gland mRNAs. The sequences of the corresponding proteins consist of 57-58 amino acid residues and display several unique features when compared with all known short-chain neurotoxins. Accordingly, they grouped separately in phylogenetic analysis. The six cDNAs were expressed in Escherichia coli and the recombinant proteins were characterized. They have similar masses and display similar toxicities and binding constants to the nAChR as the native toxins isolated from the venom. Thus, a new group of short-chain postsynaptic neurotoxins from the venom of an Australian elapid has been characterized.  相似文献   

18.
Most animal toxins are short proteins that appear in venom and vary in sequence, structure and function. A common characteristic of many such toxins is their apparent structural stability. Sporadic instances of endogenous toxin-like proteins that function in non-venom context have been reported. We have utilized machine learning methodology, based on sequence-derived features and guided by the notion of structural stability, in order to conduct a large-scale search for toxin and toxin-like proteins. Application of the method to insect and mammalian sequences revealed novel families of toxin-like proteins. One of these proteins shows significant similarity to ion channel inhibitors that are expressed in cone snail and assassin bug venom, and is surprisingly expressed in the bee brain. A toxicity assay in which the protein was injected to fish induced a strong yet reversible paralytic effect. We suggest that the protein may function as an endogenous modulator of voltage-gated Ca(2+) channels. Additionally, we have identified a novel mammalian cluster of toxin-like proteins that are expressed in the testis. We suggest that these proteins might be involved in regulation of nicotinic acetylcholine receptors that affect the acrosome reaction and sperm motility. Finally, we highlight a possible evolutionary link between venom toxins and antibacterial proteins. We expect our methodology to enhance the discovery of additional novel protein families.  相似文献   

19.
The venom proteomes of Toxicocalamus longissimus and Hydrophis cyanocinctus, a fossorial and a marine species, respectively, of the Hydrophiinae genus of Elapidae, were investigated by Edman degradation of RP-HPLC isolated proteins, and de novo MS/MS sequencing of in-gel derived tryptic peptide ions. The toxin arsenal of T. longissimus is made up of 1-2 type-I PLA(2) molecules, which account for 6.5% of the venom proteins, a minor PIII-SVMP (1.4% of the venom toxins), and ~20 members of the 3FTx family comprising 92% of the venom proteome. Seventeen proteins (5 type-I PLA(2)s and 12 3FTxs) were found in the venom of H. cyanocinctus. Three-finger toxins and type-I PLA(2) proteins comprise, respectively, 81% and 19% of its venom proteome. The simplicity of the H. cyanocinctus venom proteome is highlighted by the fact that only 6 venom components (3 short-chain neurotoxins, two long-chain neurotoxins, and one PLA(2) molecule) exhibit relative abundances >5%. As expected from its high neurotoxin abundance, the LD(50) for mice of H. cyanocinctus venom was fairly low, 0.132μg/g (intravenous) and 0.172μg/g (intraperitoneal). Our data indicate that specialization towards a lethal cocktail of 3FTx and type-I PLA(2) molecules may represent a widely adopted trophic solution throughout the evolution of Elapidae. Our results also points to a minimization of the molecular diversity of the toxin arsenal of the marine snake Hydrophis cyanocinctus in comparison to the venom proteome of its terrestrial relatives, and highlight that the same evolutionary solution, economy of the toxin arsenal, has been convergently adopted by different taxa in response to opposite selective pressures, loss and gain of neurotoxicity.  相似文献   

20.
Abstract

Snake cardiotoxins are highly basic (pI>10) small molecular weight (~6.5 kDa), all β-sheet proteins. They exhibit a broad spectrum of interesting biological activities. The secondary structural elements in these toxins include antiparallel double and triple stranded β-sheets. The three dimensional structures of these toxins reveal an unique asymmetric distribution of the hydrophobic and hydrophilic amino acids. The 3D structures of closely related snake venom toxins such as neurotoxins and cardiotoxin-like basic proteins (CLBP) fail to show similar pattern(s) in the distribution of polar and nonpolar residues. Recently, many novel biological activities have been reported for cardiotoxins. However, to-date, there is no clear structure-function correlation(s) available for snake venom cardiotoxins. The aim of this comprehensive review is to summarize and critically evaluate the progress in research on the structure, dynamics, function and folding aspects of snake venom cardiotoxins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号