首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Responses to sexually antagonistic selection are thought to be constrained by the shared genetic architecture of homologous male and female traits. Accordingly, adaptive sexual dimorphism depends on mechanisms such as genotype‐by‐sex interaction (G×S) and sex‐specific plasticity to alleviate this constraint. We tested these mechanisms in a population of Xiphophorus birchmanni (sheepshead swordtail), where the intensity of male competition is expected to mediate intersexual conflict over age and size at maturity. Combining quantitative genetics with density manipulations and analysis of sex ratio variation, we confirm that maturation traits are dimorphic and heritable, but also subject to large G×S. Although cross‐sex genetic correlations are close to zero, suggesting sex‐linked genes with important effects on growth and maturation are likely segregating in this population, we found less evidence of sex‐specific adaptive plasticity. At high density, there was a weak trend towards later and smaller maturation in both sexes. Effects of sex ratio were stronger and putatively adaptive in males but not in females. Males delay maturation in the presence of mature rivals, resulting in larger adult size with subsequent benefit to competitive ability. However, females also delay maturation in male‐biased groups, incurring a loss of reproductive lifespan without apparent benefit. Thus, in highly competitive environments, female fitness may be limited by the lack of sex‐specific plasticity. More generally, assuming that selection does act antagonistically on male and female maturation traits in the wild, our results demonstrate that genetic architecture of homologous traits can ease a major constraint on the evolution of adaptive dimorphism.  相似文献   

2.
The use of molecular genetic information in the evaluation of livestock has become more common. This study looks at the efficacy of using such information to improve the genetic evaluation of a rare breed of dual-purpose cattle. Data were available in the form of pedigree information on the Gloucester cattle breed in the United Kingdom and recorded milk and beef performance on a small number of animals. In addition, molecular genetic information in the form of multi-marker, multiple regression results converted to a 1 to 10 score (Igenity scores) and 123 single nucleotide polymorphism (SNP) genotypes for 199 non-recorded animals were available. Appropriate mixed-animal models were explored for the recorded traits and these were used to calculate estimated breeding values (EBV), and their accuracies, for 6527 animals in the breed’s pedigree file. Various ways to improve the accuracy of these EBV were explored. This involved using multivariate BLUP analyses, genomic estimated breeding values (GEBV) and combining Igenity scores with recorded traits in a series of bivariate genetic analyses. Using the milk recording traits as an example, the accuracy of a number of traits could be improved using multivariate analyses by up to 14%, depending on the combination of traits used. The level of increase in accuracy largely corresponded to the absolute difference between the genetic and residual correlations between two traits, but this was not always symmetrical. The use of GEBV did not increase the accuracy of milk trait EBV owing to the low proportion of variance explained by the 101 SNPs used. Using Igenity scores in bivariate analyses with the recorded data was more successful in increasing EBV accuracy. The largest increases were found in genotyped animals with no recorded performance (e.g. a 58% increase in fat weight in milk); however, the size of the increase depended on the level of the genetic correlation between the recorded trait and the Igenity score for that trait. Lower levels of improvements in accuracy were seen in animals that were recoded but not genotyped, and ancestors which were neither genotyped nor recorded. This study demonstrated that it was possible to improve the accuracy of EBV estimation by including Igenity score information in genetic analyses but it also concluded that increasing the level of performance recording in the breed would be beneficial.  相似文献   

3.
Understanding the action of filters on the biological trait composition of communities is constrained by the multitude of filter types (e.g. abiotic vs biotic, actual vs historical) that may cause changes of a multitude of traits (e.g. small vs large body size, short vs long life cycle) at a multitude of spatial scales (e.g. continent vs landscape vs local site). Using published data on the as natural as possible abundances and 11 biological traits (described through 63 categories) of 254 European stream invertebrate genera, we assessed how already available knowledge can serve to identify the importance of the action of different types of trait filters at two spatial scales. Therefore, we analysed observed and simulated abundance‐weighted trait compositions at the local scale of 384 running water sites (RWS) and at the landscape scale of 14 large biogeographical regions (LER). Actual abiotic filters acted significantly and independently of the taxonomic richness on the invertebrate traits at the RWS‐ and LER‐scale, whereas biotic filters had no significant effect. Evidence for the action of historical trait filters across Europe was only weak at both scales. Size, reproductive cycle, respiration and locomotion technique, feeding habits and vulnerability to disturbance responded to altitude and stream width of the RWS according to existing views about the effects of riparian, physiological, interstitial or disturbance controls of these traits. These controls acted independently on trait categories that did not co‐occur within the genera, because correlations of size categories with other trait categories were higher in the abundance‐weighted trait array (across communities) than in the original trait array (across genera). Overall, many of the 63 trait categories were scarcely affected by the trait filters considered in this study. Therefore, we briefly discuss potential effects of continental filters and of stream system‐specific, local physical filters, as the latter should produce similar trait patterns on a global scale. Our study suggests that analyses of the currently available knowledge can simplify the complicated hypothetical framework on trait filter actions, which sharpens the focus on future research needs.  相似文献   

4.
As organisms age, the effectiveness of natural selection weakens, leading to age‐related decline in fitness‐related traits. The evolution of age‐related changes associated with senescence is likely influenced by mutation accumulation (MA) and antagonistic pleiotropy (AP). MA predicts that age‐related decline in fitness components is driven by age‐specific sets of alleles, nonnegative genetic correlations within trait across age, and an increase in the coefficient of genetic variance. AP predicts that age‐related decline in a trait is driven by alleles with positive effects on fitness in young individuals and negative effects in old individuals, and is expected to lead to negative genetic correlations within traits across age. We build on these predictions using an association mapping approach to investigate the change in additive effects of SNPs across age and among traits for multiple stress‐response fitness‐related traits, including cold stress with and without acclimation and starvation resistance. We found support for both MA and AP theories of aging in the age‐related decline in stress tolerance. Our study demonstrates that the evolution of age‐related decline in stress tolerance is driven by a combination of alleles that have age‐specific additive effects, consistent with MA, as well as nonindependent and antagonistic genetic architectures characteristic of AP.  相似文献   

5.
Morphological traits of the ilium have consistently been more successful for juvenile sex determination than have techniques applied to other skeletal elements, however relatively little is known about the ontogeny and maturation of size and shape dimorphism in the ilium. We use a geometric morphometric approach to quantitatively separate the ontogeny of size and shape of the ilium, and analyze interpopulation differences in the onset, rate and patterning of sexual dimorphism. We captured the shape of three traits for a total of 191 ilia from Lisbon (Portugal) and London (UK) samples of known age and sex (0–17 years). Our results indicate that a) there is a clear dissociation between the ontogeny of size and shape in males and females, b) the ontogeny of size and shape are each defined by non‐linear trajectories that differ between the sexes, c) there are interpopulation differences in ontogenetic shape trajectories, which point to population‐specific patterning in the attainment of sexual dimorphism, and d) the rate of shape maturation and size maturation is typically higher for females than males. Male and female shape differences in the ilium are brought about by trajectory divergence. Differences in size and shape maturation between the sexes suggest that maturity may confound our ability to discriminate between the sexes by introducing variation not accounted for in age‐based groupings. The accuracy of sex determination methods using the ilium may be improved by the use of different traits for particular age groups, to capture the ontogenetic development of shape in both sexes. Am J Phys Anthropol 156:19–34, 2015 © 2014 Wiley Periodicals, Inc.  相似文献   

6.
Although loss of genetic variation is frequently assumed to be associated with loss of adaptive potential, only few studies have examined adaptation in populations with little genetic variation. On the Swedish west coast, the northern fringe populations of the natterjack toad Bufo calamita inhabit an atypical habitat consisting of offshore rock islands. There are strong among‐population differences in the amount of neutral genetic variation, making this system suitable for studies on mechanisms of trait divergence along a gradient of within‐population genetic variation. In this study, we examined the mechanisms of population divergence using QST–FST comparisons and correlations between quantitative and neutral genetic variation. Our results suggest drift or weak stabilizing selection across the six populations included in this study, as indicated by low QSTFST values, lack of significant population × temperature interactions and lack of significant differences among the islands in breeding pond size. The six populations included in this study differed in both neutral and quantitative genetic variation. Also, the correlations between neutral and quantitative genetic variation tended to be positive, however, the relatively small number of populations prevents any strong conclusions based on these correlations. Contrary to the majority of QST–FST comparisons, our results suggest drift or weak stabilizing selection across the examined populations. Furthermore, the low heritability of fitness‐related traits may limit evolutionary responses in some of the populations.  相似文献   

7.
Traits do not evolve independently. To understand how trait changes under selection might constrain adaptive changes, phenotypic and genetic correlations are typically considered within species, but these capture constraints across a few generations rather than evolutionary time. For longer-term constraints, comparisons are needed across species but associations may arise because of correlated selection pressures rather than genetic interactions. Implementing a unique approach, we use known patterns of selection to separate likely trait correlations arising due to correlated selection from those reflecting genetic constraints. We examined the evolution of stress resistance in >90 Drosophila species adapted to a range of environments, while controlling for phylogeny. Initially we examined the role of climate and phylogeny in shaping the evolution of starvation and body size, two traits previously not examined in this context. Following correction for phylogeny only a weak relationship between climate and starvation resistance was detected, while all of the variation in the relationship between body size and climate could be attributed to phylogeny. Species were divided into three environmental groups (hot and dry, hot and wet, cold) with the expectation that, if genetic correlations underpin trait correlations, these would persist irrespective of the environment, whereas selection-driven evolution should produce correlations dependent on the environment. We found positive associations between most traits in hot and dry environments coupled with high trait means. In contrast few trait correlations were observed in hot/wet and cold environments. These results suggest trait associations are primarily driven by correlated selection rather than genetic interactions, highlighting that such interactions are unlikely to limit evolution of stress resistance.  相似文献   

8.
A long-standing controversy exists about the comparative utility of metric and non-metric traits as biological indicators in population studies. We hypothesize that the underlying scale which determines the presence or absence of a cranial non-metric trait is an expression of general and/or local size variation in the cranium. Therefore metric and non-metric traits will share a common developmental determination. The hypothesis implies that the underlying scale of a non-metric trait will be correlated with measures of cranial size and shape. Forty-eight cranial metric and twenty-five cranial non-metric traits were scored on the left side of adult male crania from four North American Indian populations. New threshold traits were generated for each non-metric trait by dichotomizing discriminant scores produced by discriminant function analysis. The discriminant analysis was performed using metric traits to discriminate between groups formed by non-metric trait presence or absence. Every non-metric trait tested was significantly correlated with its threshold trait in at least one population. The correlations were of moderate to high levels depending on the trait and population sample studied. This implies that metric and non-metric traits share a moderate to high degree of developmental determination. The cause of these correlations may lie in the common effects that growth and development of the soft tissue and functional spaces of the cranium exert on both metric and non-metric traits.  相似文献   

9.
Body size is an important determinant of fitness in many organisms. While size will typically change over the lifetime of an individual, heritable components of phenotypic variance may also show ontogenetic variation. We estimated genetic (additive and maternal) and environmental covariance structures for a size trait (June weight) measured over the first 5 years of life in a natural population of bighorn sheep Ovis canadensis. We also assessed the utility of random regression models for estimating these structures. Additive genetic variance was found for June weight, with heritability increasing over ontogeny because of declining environmental variance. This pattern, mirrored at the phenotypic level, likely reflects viability selection acting on early size traits. Maternal genetic effects were significant at ages 0 and 1, having important evolutionary implications for early weight, but declined with age being negligible by age 2. Strong positive genetic correlations between age-specific traits suggest that selection on June weight at any age will likely induce positively correlated responses across ontogeny. Random regression modeling yielded similar results to traditional methods. However, by facilitating more efficient data use where phenotypic sampling is incomplete, random regression should allow better estimation of genetic (co)variances for size and growth traits in natural populations.  相似文献   

10.
The underlying basis of genetic variation in quantitative traits, in terms of the number of causal variants and the size of their effects, is largely unknown in natural populations. The expectation is that complex quantitative trait variation is attributable to many, possibly interacting, causal variants, whose effects may depend upon the sex, age and the environment in which they are expressed. A recently developed methodology in animal breeding derives a value of relatedness among individuals from high‐density genomic marker data, to estimate additive genetic variance within livestock populations. Here, we adapt and test the effectiveness of these methods to partition genetic variation for complex traits across genomic regions within ecological study populations where individuals have varying degrees of relatedness. We then apply this approach for the first time to a natural population and demonstrate that genetic variation in wing length in the great tit (Parus major) reflects contributions from multiple genomic regions. We show that a polygenic additive mode of gene action best describes the patterns observed, and we find no evidence of dosage compensation for the sex chromosome. Our results suggest that most of the genomic regions that influence wing length have the same effects in both sexes. We found a limited amount of genetic variance in males that is attributed to regions that have no effects in females, which could facilitate the sexual dimorphism observed for this trait. Although this exploratory work focuses on one complex trait, the methodology is generally applicable to any trait for any laboratory or wild population, paving the way for investigating sex‐, age‐ and environment‐specific genetic effects and thus the underlying genetic architecture of phenotype in biological study systems.  相似文献   

11.
Natural selection typically constrains the evolution of sexually‐selected characters. The evolution of naturally‐ and sexually‐selected traits can be intertwined if they share part of their genetic machinery or if sex traits impair foraging success or increase the risk of depredation. The present study investigated phenotypic correlations between naturally‐ and sexually‐selected plumage traits in the Tytonidae (barn owls, grass owls, and masked owls). Phenotypic correlations indicate the extent to which selection on one trait will indirectly influence the evolution of another trait. In this group of birds, the ventral body side varies from white to dark reddish, a naturally‐selected pheomelanin‐based colour trait with important roles in predator–prey interactions. Owls also exhibit eumelanin‐based black spots, for which number and size signal different aspects of individual quality and are used in mate choice. These three plumage traits are strongly heritable and sexually dimorphic, with females being on average darker reddish and more spotted than males. Phenotypic correlations were measured between these three plumage traits in 3958 free‐living barn owls in Switzerland and 10 670 skin specimens from 34 Tyto taxa preserved in museums. Across Tyto taxa, the sexually‐selected plumage spottiness was positively correlated with the naturally‐selected reddish coloration, with redder birds being more heavily spotted. This suggests that they are genetically constrained or that natural and sexual selection are not antagonistically exerted on plumage traits. In a large sample of Swiss nestlings and within 34 Tyto taxa, the three plumage traits were positively correlated. The production of melanin pigments for one plumage trait is therefore not traded off against the production of melanin pigments for another plumage trait. Only in the most heavily‐spotted Tyto taxa do larger‐spotted individuals display fewer spots. This indicates that, at some threshold value, the evolution of many spots constrains the evolution of large spots. These analyses raise the possibility that different combinations of melanin‐based plumage traits may not be selectively equivalent.  相似文献   

12.
When organisms are faced with new or changing environments, a central challenge is the coordination of adaptive shifts in many different phenotypic traits. Relationships among traits may facilitate or constrain evolutionary responses to selection, depending on whether the direction of selection is aligned or opposed to the pattern of trait correlations. Attempts to predict evolutionary potential in correlated traits generally assume that correlations are stable across time and space; however, increasing evidence suggests that this may not be the case, and flexibility in trait correlations could bias evolutionary trajectories. We examined genetic and environmental influences on variation and covariation in a suite of behavioural traits to understand if and how flexibility in trait correlations influences adaptation to novel environments. We tested the role of genetic and environmental influences on behavioural trait correlations by comparing Trinidadian guppies (Poecilia reticulata) historically adapted to high‐ and low‐predation environments that were reared under native and non‐native environmental conditions. Both high‐ and low‐predation fish exhibited increased behavioural variance when reared under non‐native vs. native environmental conditions, and rearing in the non‐native environment shifted the major axis of variation among behaviours. Our findings emphasize that trait correlations observed in one population or environment may not predict correlations in another and that environmentally induced plasticity in correlations may bias evolutionary divergence in novel environments.  相似文献   

13.
There has been recent debate about the expected allometry of sexually‐selected traits. Although sexually‐selected traits exhibit a diversity of allometric patterns, signalling characters are frequently positively allometric. By contrast, insect genitalia tend to be negatively allometric, although the allometry of nongenital sexually‐selected characters in insects is largely unknown (with some notable exceptions). It has also been suggested that there should be a negative association between the asymmetry and size of bilaterally‐paired, sexually‐selected traits, although this claim is controversial. We assessed the allometry and asymmetry (fluctuating asymmetry, FA) of a nongenital contact–courtship structure, the sex comb, in replicate populations of three species of Drosophila (we also measured wing FA). Sex combs are sexually‐selected characters used to grasp the female's abdomen and genitalia and to spread her wings prior to and during copulation. Although species differed in the size of the sex combs, all combs were positively allometric, and comb allometry did not generally differ significantly between species or populations. Comb and wing asymmetry did vary across species, although not across populations of the same species. However, FA was trait specific and was never negatively associated with trait size. © 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2011, 103 , 923–934.  相似文献   

14.
15.
The relative roles of natural selection and direct environmental induction, as well as of natural selection and genetic drift, in creating clinal latitudinal variation in quantitative traits have seldom been assessed in vertebrates. To address these issues, we compared molecular and quantitative genetic differentiation between six common frog (Rana temporaria) populations along an approximately 1600 km long latitudinal gradient across Scandinavia. The degree of population differentiation (QST approximately 0.81) in three heritable quantitative traits (age and size at metamorphosis, growth rate) exceeded that in eight (neutral) microsatellite loci (FST = 0.24). Isolation by distance was clear for both neutral markers and quantitative traits, but considerably stronger for one of the three quantitative traits than for neutral markers. QST estimates obtained using animals subjected to different rearing conditions (temperature and food treatments) revealed some environmental dependency in patterns of population divergence in quantitative traits, but in general, these effects were weak in comparison to overall patterns. Pairwise comparisons of FST and QST estimates across populations and treatments revealed that the degree of quantitative trait differentiation was not generally predictable from knowledge of that in molecular markers. In fact, both positive and negative correlations were observed depending on conditions where the quantitative genetic variability had been measured. All in all, the results suggest a very high degree of genetic subdivision both in neutral marker genes and genes coding quantitative traits across a relatively recently (< 9000 years) colonized environmental gradient. In particular, they give evidence for natural selection being the primary agent behind the observed latitudinal differentiation in quantitative traits.  相似文献   

16.
Correlations in behavioural traits across time, situation and ecological context (i.e. ‘behavioural syndromes’ or ‘personality’) have been documented for a variety of behaviours, and in diverse taxa. Perhaps the most controversial inference from the behavioural syndromes literature is that correlated behaviour may act as an evolutionary constraint and evolutionary change in one’s behaviour may necessarily involve shifts in others. We test the two predictions of this hypothesis using comparative data from eighteen populations of the socially polymorphic spider, Anelosimus studiosus (Araneae, Theriidae). First, we ask whether geographically distant populations share a common syndrome. Second, we test whether population differences in behaviour are correlated similarly to within‐population trait correlations. Our results reveal that populations separated by as much as 36° latitude shared similar syndromes. Furthermore, population differences in behaviour were correlated in the same manner as within‐population trait correlations. That is, population divergence tended to be along the same axes as within‐population covariance. Together, these results suggest a lack of evolutionary independence in the syndrome’s constituent traits.  相似文献   

17.
Floral attraction traits can significantly affect pollinator visitation patterns, but adaptive evolution of these traits may be constrained by correlations with other traits. In some cases, molecular pathways contributing to floral attraction are well characterized, offering the opportunity to explore loci potentially underlying variation among individuals. Here, we quantify the range of variation in floral UV patterning (i.e. UV ‘bulls‐eye nectar guides) among crop and wild accessions of Brassica rapa. We then use experimental crosses to examine the genetic architecture, candidate loci and biochemical underpinnings of this patterning as well as phenotypic manipulations to test the ecological impact. We find qualitative variation in UV patterning between wild (commonly lacking UV patterns) and crop (commonly exhibiting UV patterns) accessions. Similar to the majority of crops, recombinant inbred lines (RILs) derived from an oilseed crop × WI fast‐plant® cross exhibit UV patterns, the size of which varies extensively among genotypes. In RILs, we further observe strong statistical‐genetic and QTL correlations within petal morphological traits and within measurements of petal UV patterning; however, correlations between morphology and UV patterning are weak or nonsignificant, suggesting that UV patterning is regulated and may evolve independently of overall petal size. HPLC analyses reveal a high concentration of sinapoyl glucose in UV‐absorbing petal regions, which, in concert with physical locations of UV‐trait QTLs, suggest a regulatory and structural gene as candidates underlying observed quantitative variation. Finally, insects prefer flowers with UV bulls‐eye patterns over those that lack patterns, validating the importance of UV patterning in pollen‐limited populations of B. rapa.  相似文献   

18.
Even with increasing interest in the ecological importance of intraspecific trait variation (ITV) for better understanding ecological processes, few studies have quantified ITV in seedlings and assessed constraints imposed by trade‐offs and correlations among individual‐level leaf traits. Estimating the amount and role of ITV in seedlings is important to understand tree recruitment and long‐term forest dynamics. We measured ten different size, economics, and whole leaf traits (lamina and petiole) for more than 2,800 seedlings (height ≥ 10 cm and diameter at breast height < 1 cm) in 283 seedling plots and then quantified the amount of ITV and trait correlations across two biological (intraspecific and interspecific) and spatial (within and among plots) scales. Finally, we explored the effects of trait variance and sample size on the strength of trait correlations. We found about 40% (6%–63%) variation in leaf‐level traits was explained by ITV across all traits. Lamina and petiole traits were correlated across biological and spatial scales, whereas leaf size traits (e.g., lamina area) were weakly correlated with economics traits (e.g., specific lamina area); lamina mass ratio was strongly related to the petiole length. Trait correlations varied among species, plots, and different scales but there was no evidence that the strength of trait relationships was stronger at broader than finer biological and spatial scales. While larger trait variance increased the strength of correlations, the sample size was the most important factor that was negatively related to the strength of trait correlations. Our results showed that a large amount of trait variation was explained by ITV, which highlighted the importance of considering ITV when using trait‐based approaches in seedling ecology. In addition, sample size was an important factor that influenced the strength of trait correlations, which suggests that comparing trait correlations across studies should consider the differences in sample size.  相似文献   

19.
Genetic correlations among traits alter evolutionary trajectories due to indirect selection. Pleiotropy, chance linkage, and selection can all lead to genetic correlations, but have different consequences for phenotypic evolution. We sought to assess the mechanisms contributing to correlations with size at maturity in the cyclic parthenogen Daphnia pulicaria. We selected on size in each of four populations that differ in the frequency of sex, and evaluated correlated responses in a life table. Size at advanced adulthood, reproductive output, and adult growth rate clearly showed greater responses in high‐sex populations, with a similar pattern in neonate size and r. This pattern is expected only when trait correlations are favored by selection and the frequency of sex favors the creation and demographic expansion of highly fit clones. Juvenile growth and age at maturity did not diverge consistently. The inter‐clutch interval appeared to respond more strongly in low‐sex populations, but this was not statistically significant. Our data support the hypothesis that correlated selection is the strongest driver of genetic correlations, and suggest that in organisms with both sexual and asexual reproduction, adaptation can be enhanced by recombination.  相似文献   

20.
Economically important reproduction traits in sheep, such as number of lambs weaned and litter size, are expressed only in females and later in life after most selection decisions are made, which makes them ideal candidates for genomic selection. Accurate genomic predictions would lead to greater genetic gain for these traits by enabling accurate selection of young rams with high genetic merit. The aim of this study was to design and evaluate the accuracy of a genomic prediction method for female reproduction in sheep using daughter trait deviations (DTD) for sires and ewe phenotypes (when individual ewes were genotyped) for three reproduction traits: number of lambs born (NLB), litter size (LSIZE) and number of lambs weaned. Genomic best linear unbiased prediction (GBLUP), BayesR and pedigree BLUP analyses of the three reproduction traits measured on 5340 sheep (4503 ewes and 837 sires) with real and imputed genotypes for 510 174 SNPs were performed. The prediction of breeding values using both sire and ewe trait records was validated in Merino sheep. Prediction accuracy was evaluated by across sire family and random cross‐validations. Accuracies of genomic estimated breeding values (GEBVs) were assessed as the mean Pearson correlation adjusted by the accuracy of the input phenotypes. The addition of sire DTD into the prediction analysis resulted in higher accuracies compared with using only ewe records in genomic predictions or pedigree BLUP. Using GBLUP, the average accuracy based on the combined records (ewes and sire DTD) was 0.43 across traits, but the accuracies varied by trait and type of cross‐validations. The accuracies of GEBVs from random cross‐validations (range 0.17–0.61) were higher than were those from sire family cross‐validations (range 0.00–0.51). The GEBV accuracies of 0.41–0.54 for NLB and LSIZE based on the combined records were amongst the highest in the study. Although BayesR was not significantly different from GBLUP in prediction accuracy, it identified several candidate genes which are known to be associated with NLB and LSIZE. The approach provides a way to make use of all data available in genomic prediction for traits that have limited recording.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号