首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A nonsynonymous single nucleotide polymorphism (SNP), rs17822931-G/A (538G>A; Gly180Arg), in the ABCC11 gene determines human earwax type (i.e., wet or dry) and is one of most differentiated nonsynonymous SNPs between East Asian and African populations. A recent genome-wide scan for positive selection revealed that a genomic region spanning ABCC11, LONP2, and SIAH1 genes has been subjected to a selective sweep in East Asians. Considering the potential functional significance as well as the population differentiation of SNPs located in that region, rs17822931 is the most plausible candidate polymorphism to have undergone geographically restricted positive selection. In this study, we estimated the selection intensity or selection coefficient of rs17822931-A in East Asians by analyzing two microsatellite loci flanking rs17822931 in the African (HapMap-YRI) and East Asian (HapMap-JPT and HapMap-CHB) populations. Assuming a recessive selection model, a coalescent-based simulation approach suggested that the selection coefficient of rs17822931-A had been approximately 0.01 in the East Asian population, and a simulation experiment using a pseudo-sampling variable revealed that the mutation of rs17822931-A occurred 2006 generations (95% credible interval, 1,023-3,901 generations) ago. In addition, we show that absolute latitude is significantly associated with the allele frequency of rs17822931-A in Asian, Native American, and European populations, implying that the selective advantage of rs17822931-A is related to an adaptation to a cold climate. Our results provide a striking example of how local adaptation has played a significant role in the diversification of human traits.  相似文献   

2.
Poleward range expansions are commonly attributed to global change, but could alternatively be driven by rapid evolutionary adaptation. A well‐documented example of a range expansion during the past decades is provided by the European wasp spider Argiope bruennichi. Using ecological niche modeling, thermal tolerance experiments and a genome‐wide analysis of gene expression divergence, we show that invasive populations have adapted to novel climatic conditions in the course of their expansion. Their climatic niche shift is mirrored in an increased cold tolerance and a population‐specific and functionally differentiated gene expression response. We generated an Argiope reference genome sequence and used population genome resequencing to assess genomic changes associated with the new climatic adaptations. We find clear genetic differentiation and a significant admixture with alleles from East Asian populations in the invasive Northern European populations. Population genetic modeling suggests that at least some of these introgressing alleles have contributed to the new adaptations during the expansion. Our results thus confirm the notion that range expansions are not a simple consequence of climate change, but are accompanied by fast genetic changes and adaptations that may be fuelled through admixture between long separated lineages.  相似文献   

3.
Local adaptations to environmental conditions are of high ecological importance as they determine distribution ranges and likely affect species responses to climate change. Increased environmental stress (warming, extreme drought) due to climate change in combination with decreased genetic mixing due to isolation may lead to stronger local adaptations of geographically marginal than central populations. We experimentally observed local adaptations of three marginal and four central populations of Fagus sylvatica L., the dominant native forest tree, to frost over winter and in spring (late frost). We determined frost hardiness of buds and roots by the relative electrolyte leakage in two common garden experiments. The experiment at the cold site included a continuous warming treatment; the experiment at the warm site included a preceding summer drought manipulation. In both experiments, we found evidence for local adaptation to frost, with stronger signs of local adaptation in marginal populations. Winter frost killed many of the potted individuals at the cold site, with higher survival in the warming treatment and in those populations originating from colder environments. However, we found no difference in winter frost tolerance of buds among populations, implying that bud survival was not the main cue for mortality. Bud late frost tolerance in April differed between populations at the warm site, mainly because of phenological differences in bud break. Increased spring frost tolerance of plants which had experienced drought stress in the preceding summer could also be explained by shifts in phenology. Stronger local adaptations to climate in geographically marginal than central populations imply the potential for adaptation to climate at range edges. In times of climate change, however, it needs to be tested whether locally adapted populations at range margins can successfully adapt further to changing conditions.  相似文献   

4.
Genomewide analysis of genetic divergence is critically important in understanding the genetic processes of allopatric speciation. We sequenced RAD tags of 131 Asian seabass individuals of six populations from South‐East Asia and Australia/Papua New Guinea. Using 32 433 SNPs, we examined the genetic diversity and patterns of population differentiation across all the populations. We found significant evidence of genetic heterogeneity between South‐East Asian and Australian/Papua New Guinean populations. The Australian/Papua New Guinean populations showed a rather lower level of genetic diversity. FST and principal components analysis revealed striking divergence between South‐East Asian and Australian/Papua New Guinean populations. Interestingly, no evidence of contemporary gene flow was observed. The demographic history was further tested based on the folded joint site frequency spectrum. The scenario of ancient migration with historical population size changes was suggested to be the best fit model to explain the genetic divergence of Asian seabass between South‐East Asia and Australia/Papua New Guinea. This scenario also revealed that Australian/Papua New Guinean populations were founded by ancestors from South‐East Asia during mid‐Pleistocene and were completely isolated from the ancestral population after the last glacial retreat. We also detected footprints of local selection, which might be related to differential ecological adaptation. The ancient gene flow was examined and deemed likely insufficient to counteract the genetic differentiation caused by genetic drift. The observed genomic pattern of divergence conflicted with the ‘genomic islands’ scenario. Altogether, Asian seabass have likely been evolving towards allopatric speciation since the split from the ancestral population during mid‐Pleistocene.  相似文献   

5.
《Global Change Biology》2018,24(6):2735-2748
Predictions of the projected changes in species distributions and potential adaptation action benefits can help guide conservation actions. There is substantial uncertainty in projecting species distributions into an unknown future, however, which can undermine confidence in predictions or misdirect conservation actions if not properly considered. Recent studies have shown that the selection of alternative climate metrics describing very different climatic aspects (e.g., mean air temperature vs. mean precipitation) can be a substantial source of projection uncertainty. It is unclear, however, how much projection uncertainty might stem from selecting among highly correlated, ecologically similar climate metrics (e.g., maximum temperature in July, maximum 30‐day temperature) describing the same climatic aspect (e.g., maximum temperatures) known to limit a species’ distribution. It is also unclear how projection uncertainty might propagate into predictions of the potential benefits of adaptation actions that might lessen climate change effects. We provide probabilistic measures of climate change vulnerability, adaptation action benefits, and related uncertainty stemming from the selection of four maximum temperature metrics for brook trout (Salvelinus fontinalis), a cold‐water salmonid of conservation concern in the eastern United States. Projected losses in suitable stream length varied by as much as 20% among alternative maximum temperature metrics for mid‐century climate projections, which was similar to variation among three climate models. Similarly, the regional average predicted increase in brook trout occurrence probability under an adaptation action scenario of full riparian forest restoration varied by as much as .2 among metrics. Our use of Bayesian inference provides probabilistic measures of vulnerability and adaptation action benefits for individual stream reaches that properly address statistical uncertainty and can help guide conservation actions. Our study demonstrates that even relatively small differences in the definitions of climate metrics can result in very different projections and reveal high uncertainty in predicted climate change effects.  相似文献   

6.
Intraspecific genetic variability is critical for species adaptation and evolution and yet it is generally overlooked in projections of the biological consequences of climate change. We ask whether ongoing climate changes can cause the loss of important gene pools from North Atlantic relict kelp forests that persisted over glacial–interglacial cycles. We use ecological niche modelling to predict genetic diversity hotspots for eight species of large brown algae with different thermal tolerances (Arctic to warm temperate), estimated as regions of persistence throughout the Last Glacial Maximum (20,000 YBP), the warmer Mid‐Holocene (6,000 YBP), and the present. Changes in the genetic diversity within ancient refugia were projected for the future (year 2100) under two contrasting climate change scenarios (RCP2.6 and RCP8.5). Models predicted distributions that matched empirical distributions in cross‐validation, and identified distinct refugia at the low latitude ranges, which largely coincide among species with similar ecological niches. Transferred models into the future projected polewards expansions and substantial range losses in lower latitudes, where richer gene pools are expected (in Nova Scotia and Iberia for cold affinity species and Gibraltar, Alboran, and Morocco for warm‐temperate species). These effects were projected for both scenarios but were intensified under the extreme RCP8.5 scenario, with the complete borealization (circum‐Arctic colonization) of kelp forests, the redistribution of the biogeographical transitional zones of the North Atlantic, and the erosion of global gene pools across all species. As the geographic distribution of genetic variability is unknown for most marine species, our results represent a baseline for identification of locations potentially rich in unique phylogeographic lineages that are also climatic relics in threat of disappearing.  相似文献   

7.
In this work, we present new evidence supporting the idea that the first Americans were very distinct from late and recent Native Americans and Asians in terms of cranial morphology. The study is based on 30 early Holocene specimens recovered from Sumidouro Cave (Lagoa Santa region, central Brazil) by Peter Lund in 1843. Sumidouro is the largest known collection of Paleoindian skulls deriving from a single site. Six different multivariate statistical methods were applied to assess the morphological affinities of the Sumidouro skulls in comparison to Howells' worldwide extant series and late archaic Brazilian series (Base Aérea and Tapera). The results show a clear association between Sumidouro and Australo-Melanesians and none with late Asian and Amerindian series. These results are in accordance with those of previous studies of final Pleistocene/early Holocene human skulls from South, Central, and North America, attesting to a colonization of the New World by at least two different, succeeding biological populations: an early one with a cranial morphology similar to that found today in the African and Australian continents, and a later one with a morphology similar to that found today among northeastern Asians.  相似文献   

8.
The present study attempts to elucidate possible microevolutionary adaptations of life-history traits of high-latitude populations of the holarctic, littoral oribatid mite Ameronothrus lineatus by comparing arctic and temperate populations. Additionally, the paper provides an overview of the limited research on general ecology and population biology of arctic populations. In the Arctic the larviparous A. lineatus has a 5-year life cycle (larva-to-larva), and adults survive a further 2–3 years. High survival to maturity is consistent with a low lifetime reproductive output of ca. 20 larvae. The life history can be regarded as an extreme version of the typical oribatid life history. However, several life-history features suggest specific adaptations of arctic populations. In particular, the pre-moult resting stage is synchronized with the warmest part of the arctic summer, which shortens this vulnerable part of development. High reproductive investment by females at relatively low temperatures may represent a physiological adaptation to the cool arctic summer. Finally, prolonged cold exposure positively affects reproduction and survival the following summer, suggesting adaptation of the species to the highly seasonal arctic environment. On the other hand, the ability of all life-cycle stages to overwinter, and a flexible life history with the species being able to take advantage of favourable climatic conditions to accelerate development and larviposition, seem to be ancestral features. Thus, the success of A. lineatus in arctic habitats is probably attributable to a combination of derived and ancestral life-history traits. Studies of conspecific temperate populations are required to elucidate further local adaptations of arctic populations.  相似文献   

9.
The present study attempts to elucidate possible microevolutionary adaptations of life-history traits of high-latitude populations of the holarctic, littoral oribatid mite Ameronothrus lineatus by comparing arctic and temperate populations. Additionally, the paper provides an overview of the limited research on general ecology and population biology of arctic populations. In the Arctic the larviparous A. lineatus has a 5-year life cycle (larva-to-larva), and adults survive a further 2-3 years. High survival to maturity is consistent with a low lifetime reproductive output of ca. 20 larvae. The life history can be regarded as an extreme version of the typical oribatid life history. However, several life-history features suggest specific adaptations of arctic populations. In particular, the pre-moult resting stage is synchronized with the warmest part of the arctic summer, which shortens this vulnerable part of development. High reproductive investment by females at relatively low temperatures may represent a physiological adaptation to the cool arctic summer. Finally, prolonged cold exposure positively affects reproduction and survival the following summer, suggesting adaptation of the species to the highly seasonal arctic environment. On the other hand, the ability of all life-cycle stages to overwinter, and a flexible life history with the species being able to take advantage of favourable climatic conditions to accelerate development and larviposition, seem to be ancestral features. Thus, the success of A. lineatus in arctic habitats is probably attributable to a combination of derived and ancestral life-history traits. Studies of conspecific temperate populations are required to elucidate further local adaptations of arctic populations.  相似文献   

10.
We compared the starvation tolerance of macropter brown planthopper, Nilaparvata lugens Stål (Homoptera: Delphacidae), a characteristic favoring long-distance migration, among populations collected from subtropical and temperate East Asia, tropical Indochina, and the Malay Peninsula. Starvation tolerance of planthoppers was significantly affected by climatic zone in which the planthoppers had been collected and by feeding duration after adult eclosion. After 24 h feeding on rice, newly emerged macropters originating from East Asia lived longer without feeding (starvation tolerance) than macropters from the tropical populations. The difference in longevity between the two groups of populations became more conspicuous when macropters fed on rice for 48 or 72 h, indicating that post-eclosion feeding markedly increased starvation tolerance in East Asian populations relative to the tropical populations. These facts provide evidence that N. lugens populations that are adapted for long-distance migration are distributed in subtropical and temperate East Asia. From the data on post-eclosion feeding together with starvation tolerance, we discuss the timing of planthopper takeoff from paddies and the difference in resource allocation (vitellogenesis or stored resources) between East Asian and tropical populations.  相似文献   

11.
Domesticates are an excellent model for understanding biological consequences of rapid climate change. Maize (Zea mays ssp. mays) was domesticated from a tropical grass yet is widespread across temperate regions today. We investigate the biological basis of temperate adaptation in diverse structured nested association mapping (NAM) populations from China, Europe (Dent and Flint) and the United States as well as in the Ames inbred diversity panel, using days to flowering as a proxy. Using cross-population prediction, where high prediction accuracy derives from overall genomic relatedness, shared genetic architecture, and sufficient diversity in the training population, we identify patterns in predictive ability across the five populations. To identify the source of temperate adapted alleles in these populations, we predict top associated genome-wide association study (GWAS) identified loci in a Random Forest Classifier using independent temperate–tropical North American populations based on lines selected from Hapmap3 as predictors. We find that North American populations are well predicted (AUC equals 0.89 and 0.85 for Ames and USNAM, respectively), European populations somewhat well predicted (AUC equals 0.59 and 0.67 for the Dent and Flint panels, respectively) and that the Chinese population is not predicted well at all (AUC is 0.47), suggesting an independent adaptation process for early flowering in China. Multiple adaptations for the complex trait days to flowering in maize provide hope for similar natural systems under climate change.Subject terms: Evolutionary genetics, Quantitative trait  相似文献   

12.
This study attempts to ascertain genetic affinities between Native American and East Asian populations by analyzing four polymorphic Alu insertions (PAIs) and three L1 polymorphic loci. These two genetic systems demonstrated strong congruence when levels of diversity and genetic distances were considered. Overall, genetic relatedness within Native American groups does not correlate with geographical and linguistic structure, although strong grouping for Native Americans with East Asians was demonstrated, with clear discrimination from African and European groups. Most of the variation was assigned to differences occurring within groups, but the interpopulation variation found for South Amerindians was recognizably higher in comparison to the other sampled groups of populations. Our data suggest that bottleneck events followed by strong influence of genetic drift in the process of the peopling of the Americas may have been determinant factors in delineating the genetic background of present-day South Amerindians. Since no clear subgroups were detected within Native Americans and East Asians, there is no indication of multiple waves in the early colonization of the New World.  相似文献   

13.
水青冈属(Fagus L.)在北温带呈间断分布, 已发现的丰富的第三纪化石为讨论其起源和演化提供了证据。该文采用泛生物地理学的轨迹分析方法对水青冈属的分布进行了研究, 试图分析水青冈属的分布格局, 进而讨论其进化问题。结果表明, 水青冈属在中国、日本、北美、欧洲的分布是完全间断的, 没有一个共有轨迹连接它们, 即使在毗邻的、且有植物亲缘关系的中国和日本, 也没有一个共有轨迹连接。完全间断的轨迹对分析水青冈属的起源、演化和扩散学说, 没有提供任何信息。仅有两条共有轨迹分别分布在中国东南部和日本, 分别代表了中国4种和日本3种水青冈属种类的连接, 说明水青冈属经历了漫长的历史演化, 扩散能力是有局限性的, 仅在分化和多样性中心进行了一些分化和演化, 整个属并未进行长距离的扩散, 或者长距离扩散早已销声匿迹了, 现代的分布格局完全是以间断为最主要特征的。间断分布的动力解释为古地中海西撤、青藏高原隆起、东亚季风活动等地质历史事件, 第三纪以来特别是第四纪冰期活动等气候波动, 以及水青冈属植物的生物学特性(特别是喜温喜湿)。  相似文献   

14.
崔娅铭 《人类学学报》2016,35(1):89-100
中面部的形态是个人识别的重要依据,并且长期以来都在各人种的形态对比研究中占有重要的地位。而中面部骨骼形态复杂,骨骼表面不规则,很难用传统的方法来进行测量和比较。本文采用基于三维表面半标志点的几何形态测量学研究东亚现代人中面部的形态及其变异范围,并与其他各大地理位置中的现代人群的中面部形态进行对比,为人类演化和对比不同人群的形态研究建立基础数据。本研究结果显示中面部形态能够大致区分各个现代人群,其中东亚现代人与除美洲印第安人以外的所有现代人的中面部形状之间都具有较为明显的差异。东亚现代人与澳大利亚和非洲的现代人中面部形状之间的差别最明显,而与欧洲和东南亚现代人的分布范围有部分重叠。东亚现代人群中面部的平均形状却具有非常明显的特点:沿着正中矢状面的结构回缩,而两侧的结构向前方和两侧突出。而其他现代人群的中面部平均形状则呈现出相反的特征,即沿着正中矢状面的结构为突出,而两侧的结构回缩的特征。这些特点在东亚发现的化石人类标本中也有很高的发生率,这表明这些中面部特征在东亚人类进化的序列是连续的,并无受到干扰的迹象。  相似文献   

15.
BIOME 6000 is an international project to map vegetation globally at mid‐Holocene (6000 14C yr bp ) and last glacial maximum (LGM, 18,000 14C yr bp ), with a view to evaluating coupled climate‐biosphere model results. Primary palaeoecological data are assigned to biomes using an explicit algorithm based on plant functional types. This paper introduces the second Special Feature on BIOME 6000. Site‐based global biome maps are shown with data from North America, Eurasia (except South and Southeast Asia) and Africa at both time periods. A map based on surface samples shows the method’s skill in reconstructing present‐day biomes. Cold and dry conditions at LGM favoured extensive tundra and steppe. These biomes intergraded in northern Eurasia. Northern hemisphere forest biomes were displaced southward. Boreal evergreen forests (taiga) and temperate deciduous forests were fragmented, while European and East Asian steppes were greatly extended. Tropical moist forests (i.e. tropical rain forest and tropical seasonal forest) in Africa were reduced. In south‐western North America, desert and steppe were replaced by open conifer woodland, opposite to the general arid trend but consistent with modelled southward displacement of the jet stream. The Arctic forest limit was shifted slighly north at 6000 14C yr bp in some sectors, but not in all. Northern temperate forest zones were generally shifted greater distances north. Warmer winters as well as summers in several regions are required to explain these shifts. Temperate deciduous forests in Europe were greatly extended, into the Mediterranean region as well as to the north. Steppe encroached on forest biomes in interior North America, but not in central Asia. Enhanced monsoons extended forest biomes in China inland and Sahelian vegetation into the Sahara while the African tropical rain forest was also reduced, consistent with a modelled northward shift of the ITCZ and a more seasonal climate in the equatorial zone. Palaeobiome maps show the outcome of separate, independent migrations of plant taxa in response to climate change. The average composition of biomes at LGM was often markedly different from today. Refugia for the temperate deciduous and tropical rain forest biomes may have existed offshore at LGM, but their characteristic taxa also persisted as components of other biomes. Examples include temperate deciduous trees that survived in cool mixed forest in eastern Europe, and tropical evergreen trees that survived in tropical seasonal forest in Africa. The sequence of biome shifts during a glacial‐interglacial cycle may help account for some disjunct distributions of plant taxa. For example, the now‐arid Saharan mountains may have linked Mediterranean and African tropical montane floras during enhanced monsoon regimes. Major changes in physical land‐surface conditions, shown by the palaeobiome data, have implications for the global climate. The data can be used directly to evaluate the output of coupled atmosphere‐biosphere models. The data could also be objectively generalized to yield realistic gridded land‐surface maps, for use in sensitivity experiments with atmospheric models. Recent analyses of vegetation‐climate feedbacks have focused on the hypothesized positive feedback effects of climate‐induced vegetation changes in the Sahara/Sahel region and the Arctic during the mid‐Holocene. However, a far wider spectrum of interactions potentially exists and could be investigated, using these data, both for 6000 14C yr bp and for the LGM.  相似文献   

16.
The badger, Meles meles, is a widely distributed mustelid in Eurasia and shows large geographic variability in morphological characters whose evolutionary significance is unclear and needs to be contrasted with molecular data. We sequenced 512 bp of the mitochondrial DNA control region in 115 Eurasian badgers from 21 countries in order to test for the existence of structuring in their phylogeography, to describe the genetic relationships among their populations across its widespread geographic range, and to infer demographic and biogeographic processes. We found that the Eurasian badger is divided into four groups regarding their mitochondrial DNA: Europe, Southwest Asia, North and East Asia, and Japan. This result suggests that the separation of badgers into phylogeographic groups was influenced by cold Pleistocene glacial stages and permafrost boundaries in Eurasia, and by geographic barriers, such as mountains and deserts. Genetic variation within phylogeographic groups based on distances assuming the Tamura-Nei model with rate heterogeneity and invariable sites (d(T-N) range: 3.3-4.2) was much lower than among them (d(T-N) range: 10.7-38.0), and 80% of the variation could be attributed to differences among regions. Spatial analysis of molecular variance (samova), median-joining network, and Mantel test did not detect genetic structuring within any of the phylogeographic groups with the exception of Europe, where 50% of variation was explained by differences among groups of populations. Our data suggest that the European, Southwest Asian, and North and East Asian badgers evolved separately since the end of Pliocene, at the beginnings of glacial ages, whereas Japanese badgers separated from continental Asian badgers during the middle Pleistocene. Endangered badgers from Crete Island, classified as Meles meles arcalus subspecies, were closely related to badgers from Southwest Asia. We also detected sudden demographic growth in European and Southwest Asian badgers that occurred during the Middle Pleistocene.  相似文献   

17.
Many morphological features of the Pleistocene fossil hominin Homo neanderthalensis, including the reputed large size of its paranasal sinuses, have been interpreted as adaptations to extreme cold, as some Neanderthals lived in Europe during glacial periods. This interpretation of sinus evolution rests on two assumptions: that increased craniofacial pneumatization is an adaptation to lower ambient temperatures, and that Neanderthals have relatively large sinuses. Analysis of humans, other primates, and rodents, however, suggests that the first assumption is suspect; at least the maxillary sinus undergoes a significant reduction in volume in extreme cold, in both wild and laboratory conditions. The second assumption, that Neanderthal sinuses are large, extensive, or even ‘hyperpneumatized,’ has held sway since the first specimen was described and has been interpreted as the causal explanation for some of the distinctive aspects of Neanderthal facial form, but has never been evaluated with respect to scaling. To test the latter assumption, previously published measurements from two-dimensional (2D) X-rays and new three-dimensional (3D) data from computed tomography (CT) of Neanderthals and temperate-climate European Homo sapiens are regressed against cranial size to determine the relative size of their sinuses. The 2D data reveal a degree of craniofacial pneumatization in Neanderthals that is both commensurate with the size of the cranium and comparable in scale with that seen in temperate climate H. sapiens. The 3D analysis of CT data from a smaller sample supports this conclusion. These results suggest that the distinctive Neanderthal face cannot be interpreted as a direct result of increased pneumatization, nor is it likely to be an adaptation to resist cold stress; an alternative explanation is thus required.  相似文献   

18.
Invasive species represent unique opportunities to evaluate the role of local adaptation during colonization of new environments. Among these species, the Asian tiger mosquito, Aedes albopictus, is a threatening vector of several human viral diseases, including dengue and chikungunya, and raises concerns about the Zika fever. Its broad presence in both temperate and tropical environments has been considered the reflection of great “ecological plasticity.” However, no study has been conducted to assess the role of adaptive evolution in the ecological success of Ae. albopictus at the molecular level. In the present study, we performed a genomic scan to search for potential signatures of selection leading to local adaptation in one‐hundred‐forty field‐collected mosquitoes from native populations of Vietnam and temperate invasive populations of Europe. High‐throughput genotyping of transposable element insertions led to the discovery of more than 120,000 polymorphic loci, which, in their great majority, revealed a virtual absence of structure between the biogeographic areas. Nevertheless, 92 outlier loci showed a high level of differentiation between temperate and tropical populations. The majority of these loci segregate at high insertion frequencies among European populations, indicating that this pattern could have been caused by recent adaptive evolution events in temperate areas. An analysis of the overlapping and neighbouring genes highlighted several candidates, including diapause, lipid and juvenile hormone pathways.  相似文献   

19.
How does climate variation limit the range of species and what does it take for species to colonize new regions? In this issue of Molecular Ecology, Campbell‐Staton et al. ( 2018 ) address these broad questions by investigating cold tolerance adaptation in the green anole lizard (Anolis carolinensis) across a latitudinal transect. By integrating physiological data, gene expression data and acclimation experiments, the authors disentangle the mechanisms underlying cold adaptation. They first establish that cold tolerance adaptation in Anolis lizards follows the predictions of the oxygen‐ and capacity‐limited thermal tolerance hypothesis, which states that organisms are limited by temperature thresholds at which oxygen supply cannot meet demand. They then explore the drivers of cold tolerance at a finer scale, finding evidence that northern populations are adapted to cooler thermal regimes and that both phenotypic plasticity and heritable genetic variation contribute to cold tolerance. The integration of physiological and gene expression data further highlights the varied mechanisms that drive cold tolerance adaptation in Anolis lizards, including both supply‐side and demand‐side adaptations that improve oxygen economy. Altogether, their work provides new insight into the physiological and genetic mechanisms underlying adaptation to new climatic niches and demonstrates that cold tolerance in northern lizard populations is achieved through the synergy of physiological plasticity and local genetic adaptation for thermal performance.  相似文献   

20.
How populations of long‐living species respond to climate change depends on phenotypic plasticity and local adaptation processes. Marginal populations are expected to have lags in adaptation (i.e. differences between the climatic optimum that maximizes population fitness and the local climate) because they receive pre‐adapted alleles from core populations preventing them from reaching a local optimum in their climatically marginal habitat. Yet, whether adaptation lags in marginal populations are a common feature across phylogenetically and ecologically different species and how lags can change with climate change remain unexplored. To test for range‐wide patterns of phenotypic variation and adaptation lags of populations to climate, we (a) built model ensembles of tree height accounting for the climate of population origin and the climate of the site for 706 populations monitored in 97 common garden experiments covering the range of six European forest tree species; (b) estimated populations' adaptation lags as the differences between the climatic optimum that maximizes tree height and the climate of the origin of each population; (c) identified adaptation lag patterns for populations coming from the warm/dry and cold/wet margins and from the distribution core of each species range. We found that (a) phenotypic variation is driven by either temperature or precipitation; (b) adaptation lags are consistently higher in climatic margin populations (cold/warm, dry/wet) than in core populations; (c) predictions for future warmer climates suggest adaptation lags would decrease in cold margin populations, slightly increasing tree height, while adaptation lags would increase in core and warm margin populations, sharply decreasing tree height. Our results suggest that warm margin populations are the most vulnerable to climate change, but understanding how these populations can cope with future climates depend on whether other fitness‐related traits could show similar adaptation lag patterns.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号