首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
During continuous lipase-catalyzed oleic acid esterification by ethanol in n-hexane, the oleic acid conversion, initially at 95%, decreases to 20% after 2 h. This decrease is caused by the accumulation of the water produced in the course of the reaction in the packed-bed reactor (PBR). In order to improve the PBR efficiency, it is necessary to evacuate the water produced. In this study, different approaches have been tested to control the water content in the PBR during continuous esterification. The first approach consisted in improving the water solubility by increasing the reaction medium polarity. The addition of polar additives to n-hexane, the use of more polar solvents, and the use of solvent-free reaction medium were tested as a means to favor the water evacuation from the PBR. First of all, the use ofn-hexane supplemented with acetone (3 M) or 2-methyl-2-propanol (1 M) enabled the conversion to be maintained at higher values than those obtained in pure n-hexane. The replacement of n-hexane by a more polar solvent, like the 5-methyl-2-hexanone, resulted in the same effect. In all cases, conversions at steady-state were always less than 95%, as obtained in pure n-hexane. This is explained by a decrease in the enzyme activity due to the increase in the medium polarity. Nevertheless, an increase in enzyme quantity allowed 90% conversion to be maintained during 1 week using 3 M acetone amended n-hexane. Good results (a steady-state conversion of about 80%) were obtained when esterification was carried out in a solvent-free reaction medium containing 2 M 2-methyl-2-propanol as a polar additive. The second approach consisted in the evaporation of the accumulated water by use of an intermittent airflow. Although this process did not enable constant esterification rate to be maintained, it did enable the initial conversion (95%) to be restored intermittently.  相似文献   

2.
Esterification of oleic acid with n-butanol in the presence of Lipozyme(R) was carried out at 25 degrees C in isooctane with various initial water activities. Initial reaction rate as well as equilibrium conversion decreased at high initial water activity. Therefore, removal of water present in the reaction mixtures was essential. A pervaporation process was applied to the lipase-catalyzed synthesis of n-butyloleate to remove water. Pervaporation selectively separated water from the reaction mixture using a nonporous polymeric membrane, cellulose acetate. Therefore, pervaporation is potentially applicable to remove the water produced from various enzymatic processes, such as synthesis of various esters, peptides, and glycosides in a solvent system as well as in a solvent-free system. (c) 1995 John Wiley & Sons, Inc.  相似文献   

3.
Shi W  He B  Li J 《Bioresource technology》2011,102(9):5389-5393
A sulfonated polyethersulfone (SPES)/polyethersulfone (PES) blend catalytic membrane was prepared and used as a heterogeneous catalyst in the esterification of the acidified oil (acid value 153 mg KOH/g) with methanol for producing biodiesel. The results showed that the free fatty acids conversion reached 97.6% using SPES/PES catalytic membrane under the optimal esterification conditions. Meanwhile, the SPES/PES membrane with 20.3% degree of sulfonation showed a good catalytic stability. A pseudo-homogeneous kinetic model was established. The results indicated that the reaction rate constant increased with increasing methanol/acidified oil molar ratio, the loading of catalytic membrane and reaction temperature. The reaction order was 2 and the activation energy decreased from 74.65 to 21.07 kJ/mol with increasing catalytic membrane loading from 0 to 0.135 meq/g(oil). It implies that the esterification is not diffusively controlled but kinetically controlled. The predicted results were in good agreement with the experimental data.  相似文献   

4.
The results of pervaporation-coupled esterification of various carboxylic acids with ethanol catalyzed by Porcine pancreatic lipase are reported. The effect of lipase and substrate concentrations has been studied and the advantage of pervaporation on the equilibrium conversion has been deduced. The kinetics of reaction were analyzed with a three-parameter model which coupled the effect of pervaporation. The intrinsic kinetic constants for all the reactions were estimated and correlated with the carbon number, an indicator of hydrophobicity of the acids. It was found that the rate constant increases with decrease in carbon number. The experimental concentration profiles were simulated from the model for all the reactions and the model prediction was found to be reasonably good. The water permeability was also correlated well with acid hydrophobicity. The pervaporation coupled reaction efficiency, as represented by the reaction time for equilibrium conversion, was found to bear a profound relation to membrane surface area per unit volume of the reaction mixture (A/V). The time for equilibrium conversion was found to decrease with an increase in A/V value, reaching a minimum and then increasing with a further increase of A/V. A probable explanation has been postulated for such an observation.  相似文献   

5.
Immobilized lipase from Rhizomucor miehei (Lipozyme IM-20) was used to catalyze the esterification reaction between isovaleric acid and ethanol to synthesize ethyl isovalerate in n-hexane. Response surface methodology based on five-level four-variable central composite rotatable design was employed to optimize four important reaction variables such as enzyme/substrate E/S ratio, substrate concentration, incubation time, and temperature affecting the synthesis of ethyl isovalerate. The optimum conditions predicted for achieving maximum ester yield (500 mM) are as follows: E/S ratio, 48.41 g/mol; substrate concentration, 1 M; reaction time, 60 h; temperature, 60 degrees C. The predicted value matched well with experimentally obtained value of 487 mM.  相似文献   

6.
Differential scanning calorimetry demonstrates that the bleached form of the purple membrane does not possess any measurable thermal transition in water, up to 105 degrees C, whereas in 0.1 M phosphate pH 7.5 it shows a transition at about 82 degrees C, with an enthalpy of 110 kJ/mol. In the latter medium, the native membrane shows the main transition at 97 degrees C, with an enthalpy of 390 kJ/mol. The reduced form of the purple membrane shows two small transitions in water, as well as in 0.1 M phosphate, which do not seem to be related to the main thermal transition of the native membrane. Fourier-transform infrared spectra in D2O show that the two modified samples, as well as the native one, undergo similar secondary structural changes upon thermal denaturation. These changes appear to extend through a wide temperature range for both modified forms, particularly for the bleached one. The results suggest that the main thermal transition in the purple membrane is due to a cooperative conformational change involving the disruption of the network of electrostatic and hydrogen-bonding interactions which originate from the protonated Schiff base. In the two modified membranes, these conformational changes appear to proceed smoothly through a rather low or non-cooperative process. The thermal behaviour of the bleached membrane in water resembles that of the molten globule state described for several globular proteins.  相似文献   

7.
The thermodynamics of the conversion of aqueous L-aspartic acid to fumaric acid and ammonia have been investigated using both heat conduction microcalorimetry and high-pressure liquid chromatography. The reaction was carried out in aqueous phosphate buffer over the pH range 7.25-7.43, the temperature range 13-43 degrees C, and at ionic strengths varying from 0.066 to 0.366 mol kg(-1). The following values have been found for the conversion of aqueous L-aspartateH- to fumarate2- and NH4+ at 25 degrees C and at zero ionic strength: K = (1.48 +/- 0.10) x 10(-3), DeltaG degrees = 16.15 +/- 0.16 kJ mol(-1), DeltaH degrees = 24.5 +/- 1.0 kJ mol(-1), and DeltaC(p) degrees = -147 +/- 100 J mol(-1) K(-1). Calculations have also been performed which give values of the apparent equilibrium constant for the conversion of L-aspartic acid to fumaric acid and ammonia as a function of temperature, pH and ionic strength.  相似文献   

8.
The thermodynamics of 5'-ATGCTGATGC-3' binding to its complementary DNA and RNA strands was determined in sodium phosphate buffer under varying conditions of temperature and salt concentration from isothermal titration calorimetry (ITC). The Gibbs free energy change, DeltaG degrees of the DNA hybridization reactions increased by about 6 kJ mol(-1) from 20 degrees C to 37 degrees C and exhibited heat capacity changes of -1.42 +/- 0.09 kJ mol(-1) K(-1) for DNA/DNA and -0.87 +/- 0.05 kJ mol(-1) K(-1) for DNA/RNA. Values of DeltaG degrees decreased non-linearly by 3.5 kJ mol(-1) at 25 degrees C and 6.0 kJ mol(-1) at 37 degrees C with increase in the log of the sodium chloride concentration from 0.10 M to 1.0 M. A near-linear relationship was observed, however, between DeltaG degrees and the activity coefficient of the water component of the salt solutions. The thermodynamic parameters of the hybridization reaction along with the heat capacity changes were combined with thermodynamic contributions from the stacking to unstacking transitions of the single-stranded oligonucleotides from differential scanning calorimetry (DSC) measurements, resulting in good agreement with extrapolation of the free energy changes to 37 degrees C from the melting transition at 56 degrees C.  相似文献   

9.
This paper focuses on enzymatic esterifications in non-conventional media (organic solvents, ionic liquids, and solvent-free systems) with reference to the water removal. Different types of water removal techniques are reviewed with a special emphasis on pervaporation. Pervaporation is a separation process in which liquid is transported through a selective membrane with simultaneous evaporation of permeates. In an integrated process where pervaporation is coupled with a bioreactor where esterification is performed, selective removal of water or other esterification products can be achieved. In this manner benefit can be doubled, due to the equilibrium shift and possible pure product recovery. Available literature on esterifications coupled with pervaporation is presented in detail. Reviewed examples are divided according to the type of reaction media.  相似文献   

10.
The results of pervaporation-coupled esterification of various carboxylic acids with ethanol catalyzed by Porcine pancreatic lipase are reported. The effect of lipase and substrate concentrations has been studied and the advantage of pervaporation on the equilibrium conversion has been deduced. The kinetics of reaction were analyzed with a three-parameter model which coupled the effect of pervaporation. The intrinsic kinetic constants for all the reactions were estimated and correlated with the carbon number, an indicator of hydrophobicity of the acids. It was found that the rate constant increases with decrease in carbon number. The experimental concentration profiles were simulated from the model for all the reactions and the model prediction was found to be reasonably good. The water permeability was also correlated well with acid hydrophobicity. The pervaporation coupled reaction efficiency, as represented by the reaction time for equilibrium conversion, was found to bear a profound relation to membrane surface area per unit volume of the reaction mixture (A/V). The time for equilibrium conversion was found to decrease with an increase in A/V value, reaching a minimum and then increasing with a further increase of A/V. A probable explanation has been postulated for such an observation.  相似文献   

11.
Catalytic activity and stability of cholesterol oxidase dissolved in ternary systems composed of n-hexane, isopropanol, and water were studied. The dependence of catalytic activity on the composition of the system revealed two maxima, in contrast to the behaviour of previously studied enzymes where a single maximum has been observed. The stability profile of cholesterol oxidase showed a single sharp maximum coinciding with the microemulsion region of the phase diagram. Both catalytic activity and the first-order inactivation rate constant of cholesterol oxidase dissolved in n-hexane/isopropanol/water ternary systems were found to decrease with decreasing temperature. This decrease was more rapid for the inactivation rate constant than for catalytic activity, the activation energies being 200 and 60 kJ.mol-1, respectively. Preparative conversion of cholesterol to cholestenone catalyzed by cholesterol oxidase in n-hexane/isopropanol/water ternary systems was carried out with 100% yield. Decreased temperature and the presence of catalase were required to achieve high degrees of cholesterol conversion. A simple procedure suitable for rapid separation of the reaction product and recovery of the enzyme was developed.  相似文献   

12.
The esterification reaction of geraniol with acetic acid catalyzed by immobilized Candida antarctica lipase B was studied in hexane using a pervaporation-assisted batch reactor. The effect of thermodynamic water activity (a(w)) on the initial reaction rate was investigated at a(w) ranging from 0.02 to 1.0. The a(w) was monitored on-line in real time. a(w) was actively controlled throughout the reaction by using highly water-selective membrane pervaporation. This novel combination of a(w) sensing and control eliminates changes in a(w) during the reaction even in the initial phase of relatively rapid water release during an esterification. No chemicals are introduced for a(w) control, and no purge gases or liquids are needed. A maximum in the initial reaction rate was found approximately at a(w)=0.1. The initial reaction rate declined quickly at higher a(w), and dropped precipitously at lower a(w).  相似文献   

13.
Maleic acid-catalyzed hemicellulose hydrolysis reaction in corn stover was analyzed by kinetic modeling. Kinetic constants for Saeman and biphasic hydrolysis models were analyzed by an Arrhenius-type expansion which include activation energy and catalyst concentration factors. The activation energy for hemicellulose hydrolysis by maleic acid was determined to be 83.3 +/- 10.3 kJ/mol, which is significantly lower than the reported E(a) values for sulfuric acid catalyzed hemicellulose hydrolysis reaction. Model analysis suggest that increasing maleic acid concentrations from 0.05 to 0.2 M facilitate improvement in xylose yields from 40% to 85%, while the extent of improvement flattens to near-quantitative by increasing catalyst loading from 0.2 to 1 M. The model was confirmed for the hydrolysis of corn stover at 1 M maleic acid concentrations at 150 degrees C, resulting in a xylose yield of 96% of theoretical. The refined Saeman model was used to evaluate the optimal condition for monomeric xylose yield in the maleic acid-catalyzed reaction: low temperature reaction conditions were suggested, however, experimental results indicated that bi-phasic behavior dominated at low temperatures, which may be due to the insufficient removal of acetyl groups. A combination of experimental data and model analysis suggests that around 80-90% xylose yields can be achieved at reaction temperatures between 100 and 150 degrees C with 0.2 M maleic acid.  相似文献   

14.
A lipase from the thermophilic isolate Bacillus coagulans BTS-3 was produced and purified. The enzyme was purified 40-fold to homogeneity by ammonium sulfate precipitation and DEAE-Sepharose column chromatography. Its molecular weight was 31 kDa on SDS-PAGE. The purified lipase was immobilized on silica and its binding efficiency was found to be 60%. The enzyme took 60 min to bind maximally onto the support. The pH and temperature optima of immobilized lipase were same as those of the free enzyme, i.e. 8.5 and 55 degrees C, respectively. The immobilized enzyme had shown marked thermostability on the elevated temperatures of 55, 60, 65 and 70 degrees C. The immobilized enzyme was reused for eigth cycles as it retained almost 80% of its activity. The catalytic activity of immobilized enzyme was enhanced in n-hexane and ethanol. The immobilized enzyme when used for esterification of ethanol and propionic acid showed 96% conversion in n-hexane in 12 h at 55 degrees C.  相似文献   

15.
The temperature-dependence of water diffusion across human erythrocyte membrane was studied on isolated erythrocytes and resealed ghosts by a doping nuclear magnetic resonance technique. The conclusions are the following: (1) The storage of suspended erythrocytes at 2 degrees C up to 24 h or at 37 degrees C for 30 min did not change the water exchange time significantly, even if Mn2+ was present in the medium. This indicates that no significant penetration of Mn2+ is taking place under such conditions. (2) In case of cells previously incubated at 37 degrees C for longer than 30 min with concentrations of p-chloromercuribenzene sulfonate (PCMBS) greater than 0.5 mM, the water-exchange time gradually decreased if the cells were stored in the presence of Mn2+ for more than 10 min at 37 degrees C. (3) When the Arrhenius plot of the water-exchange time was calculated on the basis of measurements performed in such a way as to avoid a prolonged exposure of erythrocytes to Mn2+ no discontinuity occurred, regardless of the treatment with PCMBS. (4) No significant differences between erythrocytes and resealed ghosts regarding their permeability and the activation energy of water diffusion (Ea,d) were noticed. The mean value of Ea,d obtained on erythrocytes from 35 donors was 24.5 kJ/mol. (5) The value of Ea,d increased after treatment with PCMBS, in parallel with the percentage inhibition of water diffusion. A mean value of 41.3 kJ/mol was obtained for Ea,d of erythrocytes incubated with 1 mM PCMBS for 60 min at 37 degrees C and 28.3 kJ/mol for ghosts incubated with 0.1 mM PCMBS for 15 min, the values of inhibition being 46% and 21% respectively.  相似文献   

16.
Free arachidonic acid is released rapidly in the brain at the onset of ischemia and during convulsions. The transient nature of this phenomenon indicates the existence of an active reacylation system for this fatty acid, likely an arachidonoyl-CoA synthetase-arachidonoyl transferase. The first of these enzymatic activities in brain microsomes was studied and it was found that [1-14C]arachidonic acid is rapidly activated and shows an absolute requirement for ATP and CoA. MgCl2 enhances this activity 10-fold. The optimum pH is 8.5, and the apparent Km values for the radiolabeled substrate, ATP, CoA, and MgCl2 are 36, 154, 8, and 182 microM, respectively. The apparent Vmax is 32.4 nmol/min/mg protein for arachidonic acid. The presence of Triton X-100 (0.1%) in the assay medium caused a significant reduction in apparent Km (9.4 microM) and Vmax (25.7 nmol/min/mg protein) values. The enzymatic activity is thermolabile with a T1/2 of less than 1 min at 45 degrees C and a maximal activity at 40 degrees C. The breaking point or transition temperature is 25 degrees C in an Arrhenius plot. The activation energies were 95 kJ/mol from 0 to 25 degrees C and 30 kJ/mol from 25 to 40 degrees C. Fatty acid competition studies showed inhibition by unlabeled docosahexaenoic and arachidonic acids with a Ki of 31 and 37 microM, respectively, in the absence and 18 and 7.7 microM in the presence of Triton X-100. Palmitic acid and oleic acid slightly inhibited the reaction whereas linoleic acid inhibited it to a moderate extent. It is concluded that this very active enzyme can activate arachidonic acid as well as docosahexaenoic acid in brain microsomes. In addition, this reaction may be involved in regulating the pool size of these free fatty acids in brain by rapid removal through activation, thus limiting eicosanoid formation. Moreover, the rapid formation of polyenoic acyl-coenzyme A may participate in the retention of essential fatty acids in the central nervous system.  相似文献   

17.
In this work, pyrolysis characteristics were investigated using thermogravimetric analysis (TGA) at heating rates of 5-20 degrees C/min. Most of the materials were decomposed between 330 degrees C and 370 degrees C at each heating rate. The average activation energy was 236.2 kJ/mol when the pyrolytic conversion increased from 5% to 70%. The pyrolysis kinetics of oak trees was also investigated experimentally and mathematically. The experiments were carried out in a tubing reactor at a temperature range of 330-370 degrees C with a reaction time of 2-8 min. A lump model of combined series and parallel reactions for bio-oil and gas formation was proposed. The kinetic parameters were determined by nonlinear least-squares regression from the experimental data. It was found from the reaction kinetic constants that the predominant reaction pathway from the oak trees was to bio-oil formation rather than to gas formation at the investigated temperature range.  相似文献   

18.
An anaerobic ammonium oxidation (anammox) process for ammonia-rich wastewater treatment has not been reported at temperatures below 15 degrees C. This study used a gel carrier with entrapped anammox bacteria to obtain a stable nitrogen removal performance at low temperatures. In a continuous feeding test, a high nitrogen conversion rate (6.2 kg N m(-3) day(-1)) was confirmed at 32 degrees C. Nitrogen removal activity decreased gradually with decreasing operation temperature; however, it still occurred at 6 degrees C. Nitrogen conversion rates at 22 and 6.3 degrees C were 2.8 and 0.36 kg N m(-3) day(-1), respectively. Moreover, the stability of anammox activity below 20 degrees C was confirmed for more than 130 days. In batch experiments, anammox gel carriers were characterized with respect to temperature. The optimum temperature for anammox bacteria was found to be 37 degrees C. Furthermore, it was clear that the temperature dependence changed at about 28 degrees C. The apparent activation energy in the temperature range from 22 to 28 degrees C was calculated as 93 kJ mol(-1), and that in the range from 28 to 37 degrees C was 33 kJ mol(-1). This value agrees with the result of a continuous feeding test (94 kJ mol(-1), between 6 and 22 degrees C). The nitrogen removal performance demonstrated at the low temperatures used in this study will open the door for the application of anammox processes to many types of industrial wastewater treatment.  相似文献   

19.
An integrated bioprocess for the production of the natural rose-like aroma compounds, 2-phenylethanol (2-PE) and 2-phenylethylacetate (2-PEAc), from L-phenylalanine (L-phe) with yeasts was investigated. The hydrophobicity of the products leads to product inhibition, which can be compensated by in situ product removal (ISPR). An organophilic pervaporation unit, equipped with a polyoctylmethylsiloxane (POMS) membrane, was coupled via a bypass to a bioreactor and proved to be a suitable technique for the in situ removal of high-boiling products from culture broth. With batch cultures of the thermotolerant yeast Kluyveromyces marxianus CBS 600 in a standard medium at 35 degrees C, the use of pervaporation resulted in a double 2-PE concentration (2.2 g/L) and 1.3 g/L 2-PEAc, which only accumulated transiently in low concentrations during cultivation without ISPR. Using a previously optimized medium, the variation of the temperature from 30 degrees C to 40 degrees C caused an increase in the total conversion yield from 63% to 79%, corresponding to total product concentrations of 5.23 and 5.85 g/L, respectively. In the 40 degrees C batch experiment, the volumetric productivity (2-PE + 2-PEAc) during the exponential phase was 5.2 mmol/L h. While for 2-PE, there is still potential for further optimization, the more hydrophobic 2-PEAc was nearly completely removed from the aqueous culture broth (enrichment factor >400), resulting in highly aroma-enriched permeates. Due to the temperature-correlated performance of the pervaporation, the bioconversion was still efficient even at 45 degrees C (conversion yield: 69%). Surprisingly, at 45 degrees C, the molar ratio of the two products inverted and 2-PEAc turned out to be the main product (4.0 g/L), which opens easy control of the reaction's selectivity by external means. Retrofitting the process with interim heating and cooling equipment to use different temperature levels for cultivation and pervaporation resulted in a decreased yield and product concentration caused by multiple stress factors. The medium composition affected the pervaporation efficiency with molasses acting detrimental.  相似文献   

20.
Feng Y  Zhang A  Li J  He B 《Bioresource technology》2011,102(3):3607-3609
Continuous esterification of free fatty acids (FFA) from acidified oil with methanol was carried out with NKC-9 cation-exchange resin in a fixed bed reactor with an internal diameter of 25 mm and a height of 450 mm to produce biodiesel. The results showed that the FFA conversion increased with increases in methanol/oil mass ratio, reaction temperature and catalyst bed height, whereas decreased with increases in initial water content in feedstock and feed flow rate. The FFA conversion kept over 98.0% during 500 h of continuous esterification processes under 2.8:1 methanol to oleic acid mass ratio, 44.0 cm catalyst bed height, 0.62 ml/min feed flow rate and 65°C reaction temperature, showing a much high conversion and operational stability. Furthermore, the loss of sulfonic acid groups from NKC-9 resin into the production was not found during continuous esterification. In sum, NKC-9 resin shows the potential commercial applications to esterification of FFA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号