首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Simian T-lymphotropic virus type 1 (STLV-1) is a C-type retrovirus of nonhuman primates that is genetically and antigenically related to human T-lymphotropic virus type 1 (HTLV-1). Infection with STLV-1 has been reported in many species of Old World monkeys and apes, including rhesus macaques (Macaca mulatta). Similar to HTLV infection in humans, STLV infection has been associated with T-cell lymphoproliferative disease or lymphoma in a small proportion of infected animals, predominantly African species. There are conflicting reports of T-cell subset alterations in healthy HTLV-1 carriers. To the authors' knowledge, analysis of T-cell subsets in healthy STLV-1 carrier rhesus macaques has not been reported. Subsets of T cells in peripheral blood from healthy, STLV-1-seropositive rhesus macaques (n = 17) and seronegative controls matched for age and sex (n = 17) were determined by use of fluorescence-activated cell sorter analysis. Parameters measured included CD3, CD4, CD8, CD25, CD28, CD38, and HLA-DR cell sets. Significant differences in T-cell subsets or hematologic parameters were not observed between healthy STLV-seropositive and seronegative groups.  相似文献   

2.
A study was conducted to evaluate the prevalence and diversity of simian T-cell lymphotropic virus (STLV) isolates within the long-established Tulane National Primate Research Center (TNPRC) colony of sooty mangabeys (SMs; Cercocebus atys). Serological analysis determined that 22 of 39 animals (56%) were positive for STLV type 1 (STLV-1). A second group of thirteen SM bush meat samples from Sierra Leone in Africa was also included and tested only by PCR. Twenty-two of 39 captive animals (56%) and 3 of 13 bush meat samples (23%) were positive for STLV-1, as shown by testing with PCR. Nucleotide sequencing and phylogenetic analysis of viral strains obtained demonstrated that STLV-1 strains from SMs (STLV-1sm strains) from the TNPRC colony and Sierra Leone formed a single cluster together with the previously reported STLV-1sm strain from the Yerkes National Primate Research Center. These data confirm that Africa is the origin for TNPRC STLV-1sm and suggest that Sierra Leone is the origin for the SM colonies in the United States. The TNPRC STLV-1sm strains further divided into two subclusters, suggesting STLV-1sm infection of two original founder SMs at the time of their importation into the United States. STLV-1sm diversity in the TNPRC colony matches the high diversity of SIVsm in the already reported colony. The lack of correlation between the lineage of the simian immunodeficiency virus from SMs (SIVsm) and the STLV-1sm subcluster distribution of the TNPRC strains suggests that intracolony transmissions of both viruses were independent events.  相似文献   

3.
4.
The proviral DNA of the simian T-leukemia/lymphotropic virus (STLV) isolate, originally obtained from a captive colony of pygmy chimpanzees (Pan paniscus) (STLV(pan-p)), was cloned from the DNA of the chronically infected human T-cell line L93-79B. The entire proviral DNA sequence was obtained and compared with sequences of the known genotypes of STLV and human T-leukemia/lymphotropic virus types 1 and 2 (HTLV-1 and -2). Phylogenetic analysis indicates that STLV-2(pan-p) is an early divergence within the type 2 lineage and should be referred to as STLV-2(pan-p). Since STLV-2(pan-p) has been found in African nonhuman primates, we investigated its infectiousness and pathogenicity in Asian monkeys. Pigtailed macaques were inoculated with human cells harboring STLV(pan-p), and infection was assessed by virus isolation, PCR analysis of peripheral blood mononuclear cells, and seroconversion against viral antigens in HTLV-1/HTLV-2 and Western blot assay. Pigtailed macaques became persistently infected by STLV-2(pan-p), and the virus could be transferred by blood transfusion from an infected pigtailed macaque to a rhesus macaque. In addition, like HTLV-1 and HTLV-2, STLV-2(pan-p) was infectious in rabbits. In summary, STLV-2(pan-p) is a novel retrovirus distantly related to HTLV-2 and displays a host range similar to that demonstrated for other HTLV and STLV strains.  相似文献   

5.
Among eight samples obtained from a French primatology research center, six adult guinea baboons (Papio hamadryas papio), caught in the wild in Senegal, had a peculiar human T-cell leukemia virus type 2 (HTLV-2)-like Western blot seroreactivity (p24(+), GD21(+), K55(+/-)). Partial sequence analyses of the tax genes (433 bp) indicated that these baboons were infected by a novel divergent simian T-cell lymphotropic virus (STLV). Analyses of the complete proviral sequence (8,892 bp) for one of these strains (STLV-3/PPA-F3) indicate that this STLV was highly divergent from the HTLV-1 (61.6% of nucleotide similarity), HTLV-2 (61.2%), or STLV-2 (60.6%) prototype. It was, however, much more closely related to the few other known STLV-3 strains, exhibiting 87 and 89% of nucleotide similarity with STLV-3/PHA-PH969 (formerly PTLV-L/PH969) and STLV-3/CTO-604, respectively. The STLV-3/PPA-F3 sequence possesses the major HTLV or STLV open reading frames corresponding to the structural, enzymatic, and regulatory proteins. However, its long terminal repeat comprises only two 21-bp repeats. In all phylogenetic analyses, STLV-3/PPA-F3 clustered together in a highly supported single clade with the other known strains of STLV-3, indicating an independent evolution from primate T-cell lymphotropic virus type 1 (PTLV-1) and PTLV-2. The finding of a new strain of STLV-3 in a West African monkey (Guinea baboon) greatly enlarges the geographical distribution and the host range of species infected by this PTLV type in the African continent. The recent discovery of several different STLV-3 strains in many different African monkey species, often in contact with humans, strongly suggests potential interspecies transmission events, as it was described for STLV-1, between nonhuman primates but also to humans.  相似文献   

6.
Like the majority of emerging infectious diseases, HIV and HTLV are of zoonotic origin. Here we assess the risk of cross-species transmissions of their simian counterparts, SIV and STLV, from non-human primates (NHP) to humans in the Democratic Republic of Congo (DRC). A total of 331 samples, derived from NHP bushmeat, were collected as dried blood spots (DBS, n = 283) or as tissue samples (n = 36) at remote forest sites mainly in northern and eastern DRC. SIV antibody prevalences in DBS were estimated with a novel high throughput immunoassay with antigens representing the actual known diversity of HIV/SIV lineages. Antibody-positive samples were confirmed by PCR and sequence analysis. Screening for STLV infection was done with universal primers in tax, and new strains were further characterized in LTR. SIV and STLV infection in tissue samples was done by PCR only. Overall, 5 and 15.4% of NHP bushmeat was infected with SIV and STLV, respectively. A new SIV lineage was identified in Allen’s swamp monkeys (Allenopithecus nigroviridis). Three new STLV-1 subtypes were identified in Allen’s swamp monkeys (Allenopithecus nigroviridis), blue monkeys (Cercopithecus mitis), red-tailed guenons (Cercopithecus ascanius schmidti) and agile mangabeys (Cercocebus agilis). SIV and STLV prevalences varied according to species and geographic region. Our study illustrates clearly, even on a small sample size from a limited number of geographic areas, that our knowledge on the genetic diversity and geographic distribution of simian retroviruses is still limited and that humans continue to be exposed to relative high proportions on infected NHP bushmeat.  相似文献   

7.
Simian T-cell leukemia viruses (STLVs) are the simian counterparts of human T-cell leukemia viruses (HTLVs). A novel, divergent type of STLV (STLV-L) from captive baboons was reported in 1994, but its natural prevalence remained unclear. We investigated the prevalence of STLV-L in 519 blood samples from wild-living nonhuman primates in Ethiopia. Seropositive monkeys having cross-reactive antibodies against HTLV were found among 22 out of 40 hamadryas baboons, 8 of 96 anubis baboons, 24 of 50 baboons that are hybrids between hamadryas and anubis baboons, and 41 of 177 grivet monkeys, but not in 156 gelada baboons. A Western blotting assay showed that sera obtained from seropositive hamadryas and hybrid baboons exhibited STLV-L-like reactivity. A PCR assay successfully amplified STLV sequences, which were subsequently sequenced and confirmed as being closely related to STLV-L. Surprisingly, further PCR showed that nearly half of the hamadryas (20 out of 40) and hybrid (19 out of 50) baboons had STLV-L DNA sequences. In contrast, most of the seropositive anubis baboons and grivet monkeys carried typical STLV-1 but not STLV-L. These observations demonstrate that STLV-L naturally prevails among hamadryas and hybrid baboons at significantly high rates. STLV-1 and -2, the close relative of STLV-L, are believed to have jumped across simian-human barriers, which resulted in widespread infection of HTLV-1 and -2. Further studies are required to know if STLV-L is spreading into human populations.  相似文献   

8.
F Ibrahim  G de Th    A Gessain 《Journal of virology》1995,69(11):6980-6993
A study of simian T-cell leukemia virus type 1 (STLV-1) infection in a captive colony of 23 Macaca tonkeana macaques indicated that 17 animals had high human T-cell leukemia virus type 1 (HTLV-1) antibody titers. Genealogical analysis suggested mainly a mother-to-offspring transmission of this STLV-1. Three long-term T-cell lines, established from peripheral blood mononuclear cell cultures from three STLV-1-seropositive monkeys, produced HTLV-1 Gag and Env antigens and retroviral particles. The first complete nucleotide sequence of an STLV-1 (9,025 bp), obtained for one of these isolates, indicated an overall genetic organization similar to that of HTLV-1 but with a nucleotide variability for the structural genes ranging from 7.8 to 13.1% compared with the HTLV-1 ATK and STLV-1 PTM3 Asian prototypes. The Tax and Rex regulatory proteins were well conserved, while the pX region, known to encode new proteins in HTLV-1 (open reading frames I and II), was more divergent than that in the ATK strain. Furthermore, a fragment of 522 bp of the gp21 env gene from uncultured peripheral blood mononuclear cell DNAs from five of the STLV-1-infected monkeys was sequenced. Phylogenetic trees constructed with the long terminal repeat and env (gp46 and gp21) regions demonstrated that this new STLV-1 occupies a unique position within the Asian STLV-1 and HTLV-1 isolates, being, by most analyses, related more to the Australo-Melanesian HTLV-1 topotype than to any other Asian STLV-1. These data raise new hypotheses on the possible interspecies viral transmission between monkeys carrying STLV-1 and early Australoid settlers, ancestors of the present day Australo-Melanesian inhabitants, during their migrations from the Southeast Asian land mass to the greater Australian continent.  相似文献   

9.
Abstract: Among the primates held at the CIRMF Primate Center, Gabon, no serological sign of SIV infection could be demonstrated in 68 cynomolgus monkeys, 60 chimpanzees, nine gorillas, and 12 sun-tailed monkeys, while seven of 102 mandrills and six of 24 vervets were infected with SIV. Six mandrills, seven vervets and ten cynomolgus monkeys exhibited a full HTLV type 1 Western blot profile. The sera of two gorillas and one chimpanzee presented with a positive but not typical HTLV Western blot profile. The sera of the gorillas lacked p24 antibodies, and the chimpanzee had a Western blot profile evocative of HTLV-II. All attempts to amplify viruses from these animals by PCR were unsuccessful. Two other chimpanzees and seven gorillas presented with indeterminate HTLV Western blot profiles. In the mandrill colony, only male animals were STLV seropositive and no sexual transmission to females was observed. SIV infection was also more frequent in male than female mandrills and sexual transmission appeared to be a rare event. No SRV infection was observed in macaques.  相似文献   

10.
A serological survey of a captive colony of Asian monkeys indicated that six Macaca arctoides had antibodies to human T-cell leukemia/lymphotropic viruses (HTLV). Over a 4-year interval, sera from these animals continued to exhibit a peculiar Western blot (WB) pattern resembling an HTLV-2 pattern (p24gag reactivity of equal or greater intensity than that of p19gag and a strong reactivity to recombinant gp21) but also exhibiting, in five of six cases, a reactivity against MTA-1, an HTLV-1 gp46 peptide. PCR experiments on DNA extracted from peripheral blood mononuclear cells using HTLV-1- or HTLV-2-specific long terminal repeat, gag, pol, env, and tax primers yielded negative results. However, highly conserved primers successfully amplified three different gene segments of env, tax, and env-tax. The results of comparative sequence analysis demonstrated that STLV-1marc1 was not closely related to any known STLV-1 strain, was the most divergent strain of the HTLV-1-STLV-1 group, and lacked the ATG initiation codons corresponding to the p12 and p13 proteins of HTLV-1. Phylogenetic analyses incorporating representative strains of all known HTLV-STLV clades consistently depicted STLV-1marc1 within the HTLV-1-STLV-1 type 1 lineage, but it probably diverged early, since its position is clearly different from all known viral strains of this group and it had a bootstrap resampling value of 100%. Genetic distance estimates between STLV-1marc1 and all other type 1 viruses were of the same order of magnitude as those between STLV-2PanP and all other type 2 viruses. In light of the recent demonstration of interspecies transmission of some STLV-1 strains, our results suggest the existence in Asia of HTLV-1 strains related to this new divergent STLV-1marc1 strain, which may be derived from a common ancestor early in the evolution of the type 1 viruses and could be therefore considered a prototype of a new HTLV-STLV clade.  相似文献   

11.
The documentation of enamel thickness variation across primates is important because enamel thickness has both taxonomic and functional relevance. The Old World monkeys commonly referred to as mangabeys have figured prominently in investigations of feeding ecology and enamel thickness. In this article, we report enamel thickness values for four mangabey taxa (Cercocebus atys, Cercocebus torquatus, Lophocebus aterrimus, and Lophocebus albigena), offer revised interpretation of the significance of thick enamel in papionin evolution, and place our new data in a broader comparative framework. Our data indicate that all mangabeys have thick enamel and that the values obtained for Cercocebus and Lophocebus equal or exceed those published for most extant non-human primates. In addition, new field data combined with a current reading of the dietary literature indicate that hard foods make up a portion of the diet of every mangabey species sampled to date. Clarification on the relationship between diet and enamel thickness among mangabeys is important not only because of recognition that mangabeys are not a natural group but also because of recent arguments that explain thick enamel as an evolved response to the seasonal consumption of hard foods.  相似文献   

12.
13.
We conducted fecal egg counts of gastrointestinal parasites of 2 critically endangered primates endemic to the forest of Tana River, Kenya. We aimed to use the fecal egg counts as proxies to quantify the prevalence of gastrointestinal parasites between the 2 primates. The Tana River red colobus (Procolobus rufomitratus) and crested mangabey (Cercocebus galeritus) are of similar body size, but their behavioral ecology is very different. We predicted that mangabeys would have a higher prevalence of parasites because they are mostly terrestrial omnivores, live in larger social groups, and therefore range widely. We detected 10 nematodes and 3 protozoans in mangabeys and 7 nematodes and 2 protozoans in colobus. We detected a higher number of different parasite species in individual mangabeys, and 4 of the 5 nematodes requiring intermediate hosts were found in mangabeys. The overall prevalence of parasites was higher for mangabeys, but this difference was not statistically significant. For colobus, we found a trend whereby the number of different parasite species in individual monkeys was higher in males and in lactating females. However, there was no difference in the prevalence of parasites between the sexes or between lactating and nonlactating females.  相似文献   

14.
HIV-1 Tat interaction with Dicer: requirement for RNA   总被引:1,自引:0,他引:1  
Four primate (PTLV), human (HTLV) and simian (STLV) T-cell leukemia virus types, have been characterized thus far, with evidence of a simian zoonotic origin for HTLV-1, HTLV-2 and HTLV-3 in Africa. The PTLV envelope glycoprotein surface component (SUgp46) comprises a receptor-binding domain (RBD) that alternates hypervariable and highly conserved sequences. To further delineate highly conserved motifs in PTLV RBDs, we investigated the intrahost variability of HTLV-1 and STLV-1 by generating and sequencing libraries of DNA fragments amplified within the RBD of the SUgp46 env gene. Using new and highly cross-reactive env primer pairs, we observed the presence of Env quasispecies in HTLV-1 infected individuals and STLV-1 naturally infected macaques, irrespective of the clinical status. These intrahost variants helped us to define highly conserved residues and motifs in the RBD. The new highly sensitive env PCR described here appears suitable for the screening of all known variants of the different PTLV types and should, therefore, be useful for the analysis of seroindeterminate samples.  相似文献   

15.
To gain new insights on the origin, evolution, and modes of dissemination of human T-cell leukemia virus type I (HTLV-1), we performed a molecular analysis of 58 new African HTLV-1 strains (18 from West Africa, 36 from Central Africa, and 4 from South Africa) originating from 13 countries. Of particular interest were eight strains from Pygmies of remote areas of Cameroon and the Central African Republic (CAR), considered to be the oldest inhabitants of these regions. Eight long-term activated T-cell lines producing HTLV-1 gag and env antigens were established from peripheral blood mononuclear cell cultures of HTLV-1 seropositive individuals, including three from Pygmies. A fragment of the env gene encompassing most of the gp21 transmembrane region was sequenced for the 58 new strains, while the complete long terminal repeat (LTR) region was sequenced for 9 strains, including 4 from Pygmies. Comparative sequence analyses and phylogenetic studies performed on both the env and LTR regions by the neighbor-joining and DNA parsimony methods demonstrated that all 22 strains from West and South Africa belong to the widespread cosmopolitan subtype (also called HTLV-1 subtype A). Within or alongside the previously described Zairian cluster (HTLV-1 subtype B), we discovered a number of new HTLV-1 variants forming different subgroups corresponding mainly to the geographical origins of the infected persons, Cameroon, Gabon, and Zaire. Six of the eight Pygmy strains clustered together within this Central African subtype, suggesting a common origin. Furthermore, three new strains (two originating from Pygmies from Cameroon and the CAR, respectively, and one from a Gabonese individual) were particularly divergent and formed a distinct new phylogenetic cluster, characterized by specific mutations and occupying in most analyses a unique phylogenetic position between the large Central African genotype (HTLV-1 subtype B) and the Melanesian subtype (HTLV-1 subtype C). We have tentatively named this new HTLV-1 genotype HTLV-1 subtype D. While the HTLV-1 subtype D strains were not closely related to any known African strain of simian T-cell leukemia virus type 1 (STLV-1), other Pygmy strains and some of the new Cameroonian and Gabonese HTLV-1 strains were very similar (>98% nucleotide identity) to chimpanzee STLV-1 strains, reinforcing the hypothesis of interspecies transmission between humans and monkeys in Central Africa.  相似文献   

16.
Two of 25 healthy pet sooty mangabey (SM) monkeys (Cercocebus atys) living in West Africa were seropositive by immunoblot when surveyed for antibody to simian immunodeficiency virus of macaques (SIVmac). SIVsmLIB1 was isolated from one of the pet sooty mangabeys. Nucleotide sequence data showed that this isolate is a member of the SIVsm/human immunodeficiecy virus type 2 (HIV-2)/SIVmac group of primate lentiviruses. Furthermore, sequence comparisons revealed extensive genetic diversity among SIVsm isolates similar to that observed previously in SIV isolates from naturally infected African green monkeys. These observations provide additional evidence for monkey-human cross-species transmission of SIVsm as the source of HIV-2 infection of human.  相似文献   

17.
Asian nonhuman primates were surveyed seroepidemiologically for natural infection with human T-cell leukemia virus (ATLV/HTLV) or a closely related agent. Materials from various primates (three genera [Macaca, Presbytis, and Hylobates], 17 species, totalling 1,079 animals) under natural conditions were obtained in the field study. Virus infection was determined by the indirect immunofluorescence test using HTLV-specific antigens. Animals seropositive for HTLV were found only among macaques originating from various localities, toque monkeys in Sri Lanka (17.5%), crab-eating macaques in Thailand (1.3%), stumptailed macaques in Thailand (1.5%), rhesus monkeys in Thailand (3.3%), and Celebes macaques in Indonesia (16.9%). Langurs and gibbons were seronegative. Thus the wide distribution of HTLV in nature among various macaques suggests that the introduction of this virus into primates occurred in ancient times.  相似文献   

18.
19.
To understand how natural sooty mangabey hosts avoid AIDS despite high levels of simian immunodeficiency virus (SIV) SIVsm replication, we inoculated mangabeys and nonnatural rhesus macaque hosts with an identical inoculum of uncloned SIVsm. The unpassaged virus established infection with high-level viral replication in both macaques and mangabeys. A species-specific, divergent immune response to SIV was evident from the first days of infection and maintained in the chronic phase, with macaques showing immediate and persistent T-cell proliferation, whereas mangabeys displayed little T-cell proliferation, suggesting subdued cellular immune responses to SIV. Importantly, only macaques developed (CD4+)-T-cell depletion and AIDS, thus indicating that in mangabeys limited immune activation is a key mechanism to avoid immunodeficiency despite high levels of SIVsm replication. These studies demonstrate that it is the host response to infection, rather than properties inherent to the virus itself, that causes immunodeficiency in SIV-infected nonhuman primates.  相似文献   

20.
We studied the population size and distribution of diurnal primates in the lower Tana River forests, Kenya. They are the only remaining habitats for 2 threatened primates: the Tana River red colobus (Procolobus rufomitratus) and the Tana River crested mangabey (Cercocebus galeritus galeritus). We conducted censuses in 73 forest patches from January through March 2001. We estimate population size of the red colobus to be 788 individuals in 82 groups and that of the crested mangabeys to be 2,070 individuals in 59 groups. The data suggest that over a 7-year period (1994-2001), there was an 18% increase in the crested mangabey population and a 5% decline in red colobus numbers. Further, the red colobus range has expanded both north and south, whereas that of crested mangabeys has only expanded south. Fifty-six percent of crested mangabeys and 46% of red colobus groups were inside the Tana River Primate National Reserve (TRPNR). Other primates encountered included 170 groups of Sykes' monkeys (Cercopithecus mitis), 70 groups of yellow baboons (Papio cynocephalus) and 4 groups of grivets [Chlorocebus (Cercopithecus) aethiops]. Mean group densities of the 2 endangered primates and of baboons were higher inside than outside the TRPNR, reinforcing the importance of TRPNR for their conservation. An intervention program is required to stem further decline in the red colobus population and to protect small isolated groups in forest patches outside TRPNR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号