首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
Activity levels of sulfotransferases, requisite for the sulfation of chondroitin sulfate proteoglycan, were measured in cell-free homogenates prepared from neonatal epiphyseal cartilage of normal C57B1/6J or homozygous brachymorphic mice. In the presence of [35S]-PAPS only or [35S]-PAPS plus an exogenous sulfate acceptor, comparable amounts of 35SO42? were incorporated into chondroitin sulfate by the normal and mutant types of cartilage. In contrast, the mutant cartilage catalyzed the conversion of only 30% of the 35SO42? into chondroitin sulfate as compared to normal mouse cartilage when synthesis was initiated from ATP and H235SO4. These results suggest that the production of an undersulfated proteoglycan which has previously been reported in brachymorphic mice (Orkin, R.W. etal. (1976) Devel. Biol. 50, 82–94) may result from a defect in the synthesis of the sulfate donor PAPS.  相似文献   

2.
The expression and core protein structure of two proteoglycans, the major cartilage proteoglycan isolated from a rat chondrosarcoma and a small molecular weight chondroitin sulfate proteoglycan isolated from a rat yolk sac tumor, have been compared. The cartilage proteoglycan was not detectable in the cartilage tissue of cartilage matrix deficient (cmdcmd) neonatal mice by immunofluorescence, but the cmd cartilage did react with antibodies against the core protein of the yolk sac tumor proteoglycan. Radioimmunoassays showed that the core proteins of these proteoglycans are not cross-reactive with each other. Analysis of the core proteins by sodium dodecyl sulfate/polyacrylamide gel electrophoresis after chondroitinase ABC treatment of the proteoglycan revealed a large difference in their sizes. The cartilage proteoglycan core protein had a molecular weight of about 200,000 while the yolk sac tumor proteoglycan core protein migrated with an apparent molecular weight of about 20,000. In addition, the cultured yolk sac tumor cells that make the small proteoglycan did not react with antiserum against the cartilage proteoglycan. These results indicate that the proteoglycan isolated from the yolk sac tumor is similar to the small chondroitin sulfate proteoglycan species found in cartilage and support the existence of at least two dissimilar and genetically independent chondroitin sulfate proteoglycan core proteins.  相似文献   

3.
4.
Proteoglycan aggregates and proteoglycan subunits were extracted from bovine articular cartilage with guanidine-HC1 folowed by fractionation by equilibrium centrifugation in cesium chloride density gradients. The distribution of chondroitin sulfates (CS) in the cartilage proteoglycans was studied at the disaccharide level by digestion with chondroitinases. In the proteoglycan aggregate fraction, it was observed that the proportion of 4-sulfated disaccharide units to total CS increased from the bottom to the top fractions, whereas that of 6-sulfated disaccharide units was in the reverse order. Thus, the ratio of 4-sulfated disaccharide units to 6-sulfated disaccharide units increased significantly with decreasing density. The proportion of non-sulfated disaccharide units to total CS tended to increase with increasing density. These data indicate a polydisperse distribution of CS chains, under the conditions used here, in proteoglycan aggregates from bovine articular cartilage.  相似文献   

5.
6.
7.
8.
Associated proteoglycans were prepared with guanidine-HCl from bovine articular cartilage of various ages. They were purified and fractionated by equilibrium centrifugation in cesium chloride (CsCl) density gradients. The compositions of chondroitin sulfate (CS) isomers in associated proteoglycans of articular cartilages of three ages were compared based on the relative amounts of disaccharide units. The results indicated that the proportions of 4-sulfated disaccharide units comprised around 2/3, 1/3, and 1/6 of the total CS in the associated proteoglycans of calf, 18-month-old cow, and 8-year-old cow, respectively. In contrast, the proportions of 6-sulfated disaccharide units in the proteoglycans were in the reverse order; they comprised nearly 1/3, 1/2, and 2/3 of the total CS, respectively, at the three ages. Thus, with increasing age, the ratio of 4-sulfated disaccharide units to 6-sulfated disaccharide units decreased significantly. With the decrease of CsCl density in the gradients, the proportion of 4-sulfated disaccharide units to total CS as well as that of 4-sulfated disaccharide units to 6-sulfated disaccharide units increased in the associated proteoglycans of all ages. The increased ratios of 4-sulfated to 6-sulfated disaccharide units with decreasing CsCl density were significant among the individual proteoglycans: 1.84-2.36 in calf, 0.40-0.89 in 18-month-old cow, and 0.16-0.28 in 8-year-old cow.  相似文献   

9.
Chondroitin sulfate localization in mouse epiphyseal cartilage was studied using CS-56 monoclonal antibody immunospecific for the glycosaminoglycan portion of the molecule. For light and fluorescence microscopy, decalcified specimens were embedded in paraffin, Lowicryl, or were frozen and cryostat-sectioned, and the antigen-antibody reaction was demonstrated by treating sections with IgM-peroxidase, IgM-alkaline phosphatase, or IgM-fluorescein conjugates. For electron microscopy, decalcified and undecalcified specimens were embedded in Lowicryl; ultrathin sections from undecalcified specimens were decalcified by flotation on EDTA; sections from both types of specimens were treated with IgM-immunogold conjugate for demonstration of CS-56 reaction. Before immunoreaction, part of all decalcified sections were digested with Streptomyces or testicular hyaluronidase. Control sections were treated with either mouse and goat non-immune serum, or mouse monoclonal antiserum to human dendritic reticulum cells. Both light and electron microscopy show CS-56 reaction with cytoplasmic components of maturing and hypertrophic chondrocytes. Under the light microscope, immunoreaction was not visible in calcified matrix, and was visible in uncalcified matrix only after hyaluronidase digestion. Under the electron microscope, it was evident both in uncalcified and calcified matrix, although the latter showed few immunogold particles, usually placed on areas which appeared incompletely calcified. Gold particles were chiefly distributed at the periphery of calcification nodules and fully calcified matrix. These results show that CS-56, besides reacting with cytoplasm of maturing and hypertrophic chondrocytes, binds to crystal ghosts and other components of cartilage matrix, immunoreactivity decreasing as calcification increases. This suggests that chondroitin sulfate molecules are either degraded during calcification, or segregated into macromolecular complexes, or both degraded and segregated. The second possibility is supported by the increase of immunosensitivity induced by hyaluronidase digestion.  相似文献   

10.
Content of chondroitin sulphate, the number and average length of its chains are studied in isolated glycosamineglycanes from unchanged and degeneratively changed cartilage in men of different age. The chondroitin sulphate amount in the cartilage tissue is shown to decrease without change in the number of its chains with the age and with the development of the degenerative process in the cartilage. It occurs as a result of shortening of the average length of chondroitin sulphate chains which can be induced either during atypical chondrocyte synthesis of proteoglycanes or under destruction of the latter by enzymes.  相似文献   

11.
12.
13.
Proteoglycans from bovine tracheal cartilage were digested with trypsin and chymotrypsin by procedures similar to those described by Mathews (Biochem. J.125, 37 (1971)). Chondroitin sulfate-peptide fragments in the digest were precipitated with cetylpyridinium chloride and subsequently fractionated on a preparative Sepharose 6B column. The fragments, which emerged from the column as a broad peak, were divided into five fractions. Rechromatography of these fractions on an analytical Sepharose 6B column indicated that they had Kav values from 0.17 (fraction 1) to 0.62 (fraction 5). The weight average molecular weight values obtained by meniscus depletion equilibrium centrifugation were 193,000, 126,000, 80,000, 46,000, and 23,000 for fractions 1 to 5, respectively. Values for the molecular weights and for the limiting viscosity numbers, [η], of the fractions were used to determine estimates for α of 0.40–0.46 and for K of 0.43–0.88 in the equation [η] = K·Mvα. These values for α are consistent with a branched structure for the chondroitin sulfate fractions. Papain digests of each of the fractions were chromatographed on Sephadex G-200. The observed distributions of the monomer chains released by this protease were almost the same for each sample, which indicates that the individual chondroitin sulfate chains in all of the original fractions had nearly the same average molecular weights. The data in sum indicate that peptide fragments which contain from 1 to 8 polysaccharide chains are released when the proteoglycans are digested with trypsin-chymotrypsin.Analytical data indicated that all fractions contained 3–11% of their polysaccharide as keratan sulfate. This indicates either that about 50% of the keratan sulfate chains in the original proteoglycan molecules are located in close proximity to the chondroitin sulfate chains or that some peptides contain large numbers of keratan sulfate chains. Proteoglycan preparations which differed by a factor of about 6 in their ratio of chondroitin sulfate to protein yielded very similar elution patterns on Sepharose 6B after trypsin-chymotrypsin digestion.  相似文献   

14.
Production of chondroitin sulfate and chondroitin   总被引:2,自引:0,他引:2  
The production of microbial polysaccharides has recently gained much interest because of their potential biotechnological applications. Several pathogenic bacteria are known to produce capsular polysaccharides, which provide a protection barrier towards harsh environmental conditions, and towards host defences in case of invasive infections. These capsules are often composed of glycosaminoglycan-like polymers. Glycosaminoglycans are essential structural components of the mammalian extracellular matrix and they have several applications in the medical, veterinary, pharmaceutical and cosmetic field because of their peculiar properties. Most of the commercially available glycosaminoglycans have so far been extracted from animal sources, and therefore the structural similarity of microbial capsular polysaccharides to these biomolecules makes these bacteria ideal candidates as non-animal sources of glycosaminoglycan-derived products. One example is hyaluronic acid which was formerly extracted from hen crests, but is nowadays produced via Streptococci fermentations. On the other hand, no large scale biotechnological production processes for heparin and chondrotin sulfate have been developed. The larger demand of these biopolymers compared to hyaluronic acid (tons vs kilograms), due to the higher titre in the final product (grams vs milligrams/dose), and the scarce scientific effort have hampered the successful development of fermentative processes. In this paper we present an overview of the diverse applications and production methods of chondroitin reported so far in literature with a specific focus on novel microbial biotechnological approaches.  相似文献   

15.
Stability studies of chondroitin sulfate.   总被引:3,自引:0,他引:3  
The stability of chondroitin sulfate (CS) was studied under acidic, neutral and basic conditions at 30 and 60 degrees C. CS is remarkably stable under neutral conditions at low temperature, while it degrades at 60 degrees C producing low-molecular-mass fragments and desulfated products. This decomposition process begins at ca. 500-600 h and is consistent with an acid-catalyzed hydrolysis of glycosidic linkages caused by a drop in pH resulting from acidic products. Under basic conditions, a breakdown of glycosidic linkages causes a decrease in molecular mass due to the beta-elimination reaction, confirmed by a strong increase of absorbance at 232 nm and 1H NMR. Virtually no loss of O-sulfate groups can be detected in the base-treated CS. Under acidic conditions, the molecular mass decreases probably through hydrolysis of polysaccharidic linkages resulting in an increased number of reducing end groups. Little or no beta-elimination occurs. A loss of O-sulfate groups was detected, producing desulfated derivatives.  相似文献   

16.
Chondroitin sulfate proteoglycans (CSPGs) are major components of the extracellular matrix (ECM) in the brain. In the adult cerebral cortex, there are special CSPG-containing structures known as perineuronal nets (PNNs), which are highly condensed ECM structures. Here, we report a novel CSPG-containing structure distinct from PNNs in the adult mouse cerebral cortex. An anti-chondroitin sulfate antibody CS56 delineated a structure with a unique morphology like a dandelion clock. Accordingly, we named it DAndelion Clock-like Structure (DACS). Immunohistochemical evidence showed that DACSs surrounded a group of NeuN-positive/GABA-negative neurons. At ultrastructural level, CS56-immunoreactivities were localized in the cytoplasm and on the membrane of astrocytes. As the postnatal cerebral cortex matured, DACSs became visible around the end of the critical period. This is the first report demonstrating the presence of an ECM structure DACS composed of CSPGs around a group of cortical neurons in the adult cerebral cortex.  相似文献   

17.
18.
Skate cartilage is a fishery by-product, which contains chondroitin sulfate (CS), a glycosaminoglycan well known for its chondroprotective effect. Here described is a low-cost two-step process producing CS in non-denaturing conditions, consisting of an enzymatic extraction followed by tangential filtration to concentrate and purify CS. The performances of UF and MF membranes were compared in terms of flux and selectivity. The 0.1 microm-pore size membrane appeared to be the most efficient to separate CS from the other compounds.  相似文献   

19.
Heparan sulfate N-sulfotransferase catalyzes the transfer of sulfate groups from adenosine 3'-phosphate, 5'-phosphosulfate to the free amino groups of glucosamine residues in heparan sulfate. We have identified a Chinese hamster ovary cell mutant, designated pgsE-606, which is 3-5-fold defective in N-sulfotransferase activity. The residual enzyme activity is indistinguishable from the wild-type enzyme with respect to Km values for adenosine 3'-phosphate,5'-phosphosulfate and N-desulfoheparin, pH dependence, Arrhenius activation energy, and thermal lability. The mutation is recessive, and mixing experiments indicate that the mutant does not produce soluble antagonists of N-sulfotransferase. Inspection of the heparan sulfate chains from the mutant showed that the extent of N-sulfation is reduced about 2-3-fold. The addition of sulfate to hydroxyl groups on the chain is reduced to a similar extent, suggesting that N-sulfation and O-sulfation are normally coupled. Nitrous acid fragmentation of the chains showed that N-sulfated glucosamine residues are spaced much less frequently than in heparan sulfate from wild-type cells. The close correlation of enzyme activity to the number and position of N-sulfate groups indicates that N-sulfotransferase plays a pivotal role in determining the extent of sulfation of heparan sulfate.  相似文献   

20.
Monolayer cultures of embryonic chick chondrocytes were incubated with 35SO42- in the presence and absence of 1.0 mM p-nitrophenyl-beta-d-xyloside for 2 days. The relative amounts of chondroitin sulfate proteoglycan and free polysaccharide chains were measured following gel filtration on Sephadex G-200. Synthesis of beta-xyloside-initiated polysaccharide chains was accompanied by an apparent decrease in chondroitin sulfate proteoglycan production by the treated cultures. When levels of cartilage-specific core protein were determined by a radioimmunoassay, similar amounts of core protein were found in both beta-xyloside and control cultures, indicating that decreased synthesis of core protein is not responsible for the observed decrease in chondroitin sulfate proteoglycan production. Activity levels of the chain-initiating glycosyltransferases (UDP-D-xylose: core protein xylosyltransferase and UDP-D-galactose:D-xylose galactosyltransferase) as well as the extent of xylosylation of core protein were found to be similar in cell extracts from both culture types. Furthermore, beta-xylosides did not inhibit the xylosyltransferase reaction in cell-free studies. In contrast, the beta-xylosides effectively competed with several galactose acceptors, including an enzymatically synthesized xylosylated core protein acceptor, in the first galactosyltransferase reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号