首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Interferon-gamma (IFN-gamma) induced intercellular adhesion molecule-1 (ICAM-1) expression in human NCI-H292 epithelial cells, as shown by enzyme-linked immunosorbent assay and immunofluorescence staining. The enhanced ICAM-1 expression resulted in increased adhesion of U937 cells to NCI-H292 cells. Tyrosine kinase inhibitors (genistein or herbimycin), Src family inhibitor (PP2), or a phosphatidylinositol-phospholipase C inhibitor (U73122) attenuated the IFN-gamma-induced ICAM-1 expression. Protein kinase C (PKC) inhibitors (staurosporine or Ro 31-8220) also inhibited IFN-gamma-induced response. 12-O-Tetradecanoylphorbol-13-acetate (TPA), a PKC activator, stimulated ICAM-1 expression; this effect was inhibited by tyrosine kinase or Src inhibitor. ICAM-1 promoter activity was enhanced by IFN-gamma and TPA in cells transfected with pIC339-Luc, containing the downstream NF-kappaB and gamma-activated site (GAS) sites, but not in cells transfected with GAS-deletion mutant, pIC135 (DeltaAP2). Electrophoretic gel mobility shift assay demonstrated that GAS-binding complexes in IFN-gamma-stimulated cells contained STAT1alpha. The IFN-gamma-induced ICAM-1 promoter activity was inhibited by tyrosine kinase inhibitors, a phosphatidylinositol-phospholipase C inhibitor, or PKC inhibitors, and the TPA-induced ICAM-1 promoter activity was also inhibited by tyrosine kinase inhibitors. Cotransfection with a PLC-gamma2 mutant inhibited IFN-gamma- but not TPA-induced ICAM-1 promoter activity. However, cotransfection with dominant negative mutants of PKCalpha or c-Src inhibited both IFN-gamma- and TPA-induced ICAM-1 promoter activity. The ICAM-1 promoter activity was stimulated by cotransfection with wild type PLC-gamma2, PKCalpha, c-Src, JAK1, or STAT1. An immunocomplex kinase assay showed that both IFN-gamma and TPA activated c-Src and Lyn activities and that these effects were inhibited by staurosporine and herbimycin. Thus, in NCI-H292 epithelial cells, IFN-gamma activates PLC-gamma2 via an upstream tyrosine kinase to induce activation of PKC-alpha and c-Src or Lyn, resulting in activation of STAT1alpha, and GAS in the ICAM-1 promoter, followed by initiation of ICAM-1 expression and monocyte adhesion.  相似文献   

4.
Protein kinase C (PKC) is a family of enzymes detected in a diverse range of cell types where they regulate various cellular functions such as proliferation, differentiation, cytoskeletal remodelling, cytokine production, and receptor-mediated signal transduction. In this study we have analyzed the expression of 11 PKC isoforms (-alpha, -beta(I), -beta(II), -gamma, -delta, -eta, -theta, -epsilon, -zeta, -iota/lambda, and -micro) in osteoblasts from patients with osteoarthritis (OA) and rheumatoid arthritis (RA) in comparison with osteoblasts from post-traumatic (PT) patients. By Western blotting analysis, nine isoforms, -alpha, -beta(I), -beta(II), -delta, -theta, - epsilon, -zeta, - iota/lambda, and -micro, were detected in osteoblasts. In RA and OA patients, PKC -theta and -micro were greater expressed whereas PKC-epsilon and -zeta decreased when compared with normal cells. The subcellular distribution and quantitative differences were confirmed by immuno-electron microscopy. Furthermore, we demonstrated that treatment with the proinflammatory cytokines, IL-1beta and TNF-alpha, significantly decreased PKC-zeta expression in PT osteoblasts. This suggests that proinflammatory cytokines can modulate the expression of this PKC isoform in osteoblasts in a way which is similar to changes detected in arthritic patients.  相似文献   

5.
6.
The release of parathyroid hormone is regulated by the extracellular concentration of Ca2+ through a sensor(s) on the surface of the parathyroid cells, but few details are known on the further relay of the signal inside the cell. Activation of protein kinase C (PKC) isozymes is associated with their translocation from the cell soluble fraction to the particulate fraction of the cell. Therefore, identification of a subcellular localization of a PKC isozyme in parathyroid cells as a response to changes in extracellular Ca2+ should be an indication for its putative role in signal transduction coupled to the Ca2+ sensor. We have determined the subcellular localization of six PKC isozymes (alpha, betaI, betaII, epsilon, zeta, and iota) in nonstimulated parathyroid cells and in those treated with low (0.5 mM) and high (3.0 mM) extracellular Ca2+ by confocal microscopy. At the physiological concentration of serum Ca2+, all PKC isozymes studied were localized mainly to the cytosol, although to different extents. Low extracellular Ca2+ caused a redistribution of PKCalpha to the periphery of the cells. In contrast, PKCbetaI, -epsilon, -zeta, and -iota were translocated to the periphery of the cells at high extracellular Ca2+. These results indicate that PKCalpha, -betaI, -epsilon, -zeta, and -iota are involved in the response of parathyroid cells to changes in extracellular Ca2+.  相似文献   

7.
The regulation of the increase in inositol phosphates (IPs) production and intracellular Ca(2+) concentration ([Ca(2+)](i)) by protein kinase C (PKC) was investigated in canine cultured tracheal epithelial cells (TECs). Pretreatment of TECs with phorbol 12-myristate 13-acetate (PMA, 1 microM) for 30 min attenuated the ATP- and UTP-induced IPs formation and Ca(2+) mobilization. The concentrations of PMA that gave half-maximal (EC(50)) inhibition of ATP- and UTP-induced IPs accumulation and an increase in [Ca(2+)](i) were 5-10 and 4-12 nM, respectively. Prior treatment of TECs with staurosporine (1 microM), a PKC inhibitor, partially inhibited the ability of PMA to attenuate ATP- and UTP-induced responses, suggesting that the inhibitory effect of PMA is mediated through the activation of PKC. Furthermore, analysis of cell extracts by Western blotting with antibodies against different PKC isozymes revealed that TECs expressed PKC-alpha, -betaI, -betaII, -gamma, -delta, -epsilon, -theta, and -zeta. With PMA treatment of the cells for various times, translocation of PKC-alpha, -betaI, -betaII, -gamma, -delta, -epsilon, and -theta from the cytosol to the membrane was seen after 5- and 30-min and 2- and 4-h treatment. However, 6-h treatment caused a partial down-regulation of these PKC isozymes. PKC-zeta was not significantly translocated and down-regulated at any of the times tested. In conclusion, these results suggest that activation of PKC may inhibit the phosphoinositide (PI) hydrolysis and consequently attenuate the [Ca(2+)](i) increase or inhibit independently both responses to ATP and UTP. The translocation of PKC-alpha, -betaI, -betaII, -delta, -epsilon, -gamma, and -theta induced by PMA caused an attenuation of ATP- and UTP-induced IPs accumulation and Ca(2+) mobilization in TECs.  相似文献   

8.
The signaling pathway involved in TNF-alpha-induced cyclooxygenase-2 (COX-2) expression was further studied in human NCI-H292 epithelial cells. A protein kinase C (PKC) inhibitor (staurosporine), tyrosine kinase inhibitors (genistein and herbimycin A), or a Src kinase inhibitor (PP2) attenuated TNF-alpha- or 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced COX-2 promoter activity. TNF-alpha- or TPA-induced I-kappaB kinase (IKK) activation was also blocked by these inhibitors, which reversed I-kappaBalpha degradation. Activation of c-Src and Lyn kinases, two Src family members, was inhibited by the PKC, tyrosine kinase, or Src kinase inhibitors. The dominant-negative c-Src (KM) mutant inhibited induction of COX-2 promoter activity by TNF-alpha or TPA. Overexpression of the constitutively active PKCalpha (PKCalpha A/E) or wild-type c-Src plasmids induced COX-2 promoter activity, and these effects were inhibited by the dominant-negative c-Src (KM), NF-kappaB-inducing kinase (NIK) (KA), or IKKbeta (KM) mutant. The dominant-negative PKCalpha (K/R) or c-Src (KM) mutant failed to block induction of COX-2 promoter activity caused by wild-type NIK overexpression. In coimmunoprecipitation experiments, IKKalpha/beta was found to be associated with c-Src and to be phosphorylated on its tyrosine residues after TNF-alpha or TPA treatment. Two tyrosine residues, Tyr(188) and Tyr(199), near the activation loop of IKKbeta, were identified to be crucial for NF-kappaB activation. Substitution of these residues with phenylalanines attenuated COX-2 promoter activity and c-Src-dependent phosphorylation of IKKbeta induced by TNF-alpha or TPA. These data suggest that, in addition to activating NIK, TNF-alpha also activates PKC-dependent c-Src. These two pathways cross-link between c-Src and NIK and converge at IKKalpha/beta, and go on to activate NF-kappaB, via serine phosphorylation and degradation of IkappaB-alpha, and, finally, to initiate COX-2 expression.  相似文献   

9.
The expression of members of the Ca2+ and phospholipid-dependent protein kinase (PKC) family were studied in murine Swiss 3T3 cells. In addition to PKC-alpha, the presence of immunoreactive PKC-delta, -epsilon, and zeta was detected. Treatment with 500 nM 12-0-tetradecanoylphorbol-13-acetate (TPA) led to the down-regulation of alpha, delta, and epsilon isoforms, but not that of zeta. Higher concentrations of TPA similarly had no effect on the level of PKC-zeta. In contrast to PKC-alpha, the membrane localization of PKC-delta, -epsilon, and -zeta was not enhanced by extraction in Ca(2+)-containing buffers, whereas acute TPA treatment increased membrane association of PKC-alpha, -delta, and -epsilon but not that of PKC-zeta.  相似文献   

10.
TNF-alpha induced a dose- and time-dependent increase in cyclooxygenase-2 (COX-2) expression and PGE2 formation in human NCI-H292 epithelial cells. Immunofluorescence staining demonstrated that COX-2 was expressed in cytosol and nuclear envelope. Tyrosine kinase inhibitors (genistein or herbimycin) or phosphoinositide-specific phospholipase C inhibitor (U73122) blocked TNF-alpha-induced COX-2 expression. TNF-alpha also stimulated phosphatidylinositol hydrolysis and protein kinase C (PKC) activity, and both were abolished by genistein or U73122. The PKC inhibitor, staurosporine, also inhibited TNF-alpha-induced response. The 12-O-tetradecanoylphorbol 13-acetate (TPA), a PKC activator, also stimulated COX-2 expression, this effect being inhibited by genistein or herbimycin. NF-kappaB DNA-protein binding and COX-2 promoter activity were enhanced by TNF-alpha, and these effects were inhibited by genistein, U73122, staurosporine, or pyrolidine dithiocarbamate. TPA stimulated both NF-kappaB DNA-protein binding and COX-2 promoter activity, these effects being inhibited by genistein, herbimycin, or pyrolidine dithiocarbamate. The TNF-alpha-induced, but not the TPA-induced, COX-2 promoter activity was inhibited by phospholipase C-gamma2 mutants, and the COX-2 promoter activity induced by either agent was attenuated by dominant-negative mutants of PKC-alpha, NF-kappaB-inducing kinase, or I-kappaB (inhibitory protein that dissociates from NF-kappaB) kinase (IKK)1 or 2. IKK activity was stimulated by both TNF-alpha and TPA, and these effects were inhibited by staurosporine or herbimycin. These results suggest that, in NCI-H292 epithelial cells, TNF-alpha might activate phospholipase C-gamma2 via an upstream tyrosine kinase to induce activation of PKC-alpha and protein tyrosine kinase, resulting in the activation of NF-kappaB-inducing kinase and IKK1/2, and NF-kappaB in the COX-2 promoter, then initiation of COX-2 expression and PGE2 release.  相似文献   

11.
12.
Protein kinase C (PKC) has been widely implicated in regulation ofcell growth/cell cycle progression and apoptosis. However,the role of PKCdelta in radiosensitivity and cell cycle regulation remains unclear. Overexpression of PKCdelta increased Ca2+-independent PKC activity without altering other PKC isoforms (PKCalpha, -beta1, -epsilon, and -zeta), and extracellular regulated protein kinase (ERK) 1/2 activity was also increased in PKCdelta-specific manner. A clonogenic survival assay showed that PKCdelta-overexpressed cells had more radiosensitivity and pronounced induction of apoptosis than control cells. Flow cytometric analysis revealed that PKCdelta made the cells escape from radiation-induced G(2)-M arrest. Moreover, p53 and p21(Waf) induction by radiation were higher in PKCdelta-overexpressed cells than control cells, and PKCdelta-mediated apoptosis was reduced, when radiation-induced ERK1/2 activity was inhibited by PD98059. Furthermore, PKCdelta antisense and rottlerin, PKC inhibitor-abrogated PKCdelta-mediated radiosensitivity and reduced ERK1/2 activity to the control vector level. These results demonstrated that PKCdelta overexpression enhanced radiation-induced apoptosis and radiosensitivity via ERK1/2 activation, thereby abolishing the radiation-induced G(2)-M arrest and finally apoptosis.  相似文献   

13.
In pituitary GH3B6 cells, signaling involving the protein kinase C (PKC) multigene family can self-organize into a spatiotemporally coordinated cascade of isoform activation. Indeed, thyrotropin-releasing hormone (TRH) receptor activation sequentially activated green fluorescent protein (GFP)-tagged or endogenous PKCbeta1, PKCalpha, PKCepsilon, and PKCdelta, resulting in their accumulation at the entire plasma membrane (PKCbeta and -delta) or selectively at the cell-cell contacts (PKCalpha and -epsilon). The duration of activation ranged from 20 s for PKCalpha to 20 min for PKCepsilon. PKCalpha and -epsilon selective localization was lost in the presence of G?6976, suggesting that accumulation at cell-cell contacts is dependent on the activity of a conventional PKC. Constitutively active, dominant-negative PKCs and small interfering RNAs showed that PKCalpha localization is controlled by PKCbeta1 activity and is calcium independent, while PKCepsilon localization is dependent on PKCalpha activity. PKCdelta was independent of the cascade linking PKCbeta1, -alpha, and -epsilon. Furthermore, PKCalpha, but not PKCepsilon, is involved in the TRH-induced beta-catenin relocation at cell-cell contacts, suggesting that PKCepsilon is not the unique functional effector of the cascade. Thus, TRH receptor activation results in PKCbeta1 activation, which in turn initiates a calcium-independent but PKCbeta1 activity-dependent sequential translocation of PKCalpha and -epsilon. These results challenge the current understanding of PKC signaling and raise the question of a functional dependence between isoforms.  相似文献   

14.
Fc receptors play a pivotal role linking the cellular and humoral arms of the immune system [1-3]. Our previous studies have shown that the human high-affinity immunoglobulin G receptor Fc(gamma)RI couples to a novel intracellular signaling pathway requiring phospholipase D activation [4]. The mechanisms that regulate receptor coupling to phospholipase D in intact cells are poorly understood but involve small molecular weight GTPases and protein kinase C [5-7]. Here, we show that immune complex aggregation of Fc(gamma)RI stimulates the association of phospholipase D1 with ARF6 and protein kinase Calpha. Surprisingly, PKCalpha activity per se is not required. Rather, all of the Fc(gamma)RI-mediated increase in PKC activity requires phospholipase D1, as treatment of cells with butan-1-ol (0.3%) or specific downregulation of phospholipase D1 using antisense oligonucleotides inhibits Fc(gamma)RI-coupled PKC activation. Moreover, treatment of cells with butan-1-ol or phospholipase D1 antisense oligonucleotides inhibits translocation of PKCdelta, -epsilon, and -zeta but had no effect on the association of PKCalpha or ARF6 with phospholipase D1. These data indicate that association with ARF6 and PKCalpha plays a role in coupling Fc(gamma)RI to phospholipase D1 activation and that PLD1 lies upstream of all Fc(gamma)RI-mediated PKC activity.  相似文献   

15.
Regulation of human androgen biosynthesis is poorly understood. However, detailed knowledge is needed to eventually solve disorders with androgen dysbalance. We showed that starvation growth conditions shift steroidogenesis of human adrenal NCI-H295R cells towards androgen production attributable to decreased HSD3B2 expression and activity and increased CYP17A1 phosphorylation and 17,20-lyase activity. Generally, starvation induces stress and energy deprivation that need to be counteracted to maintain proper cell functions. AMP-activated protein kinase (AMPK) is a master energy sensor that regulates cellular energy balance. AMPK regulates steroidogenesis in the gonad. Therefore, we investigated whether AMPK is also a regulator of adrenal steroidogenesis. We hypothesized that starvation uses AMPK signaling to enhance androgen production in NCI-H295R cells. We found that AMPK subunits are expressed in NCI-H295 cells, normal adrenal tissue and human as well as pig ovary cells. Starvation growth conditions decreased phosphorylation, but not activity of AMPK in NCI-H295 cells. In contrast, the AMPK activator 5-aminoimidazole-4-carboxamide (AICAR) increased AMPKα phosphorylation and increased CYP17A1-17,20 lyase activity. Compound C (an AMPK inhibitor), directly inhibited CYP17A1 activities and can therefore not be used for AMPK signaling studies in steroidogenesis. HSD3B2 activity was neither altered by AICAR nor compound C. Starvation did not affect mitochondrial respiratory chain function in NCI-H295R cells suggesting that there is no indirect energy effect on AMPK through this avenue. In summary, starvation-mediated increase of androgen production in NCI-H295 cells does not seem to be mediated by AMPK signaling. But AMPK activation can enhance androgen production through a specific increase in CYP17A1-17,20 lyase activity.  相似文献   

16.
T lymphocyte activation is initiated as a result of the interaction between the TCR complex and Ag as seen in the framework of a membrane-bound MHC molecule. Receptor stimulation results in a rise in free intracellular Ca2+ and the activation of protein kinase C (PKC). Bryostatin (Bryo) and phorbol esters (e.g., 12-O-tetradecanoylphorbol 13-acetate (TPA] are PKC activators with somewhat different immunologic effects. We compared the effect of Bryo and TPA on the T cell tumor line Jurkat and derivatives of Jurkat cells grown in media supplemented with 100 nM Bryo ("BR100" cells) or 100 nM TPA ("TP100" cells). In untreated Jurkat cells, there is a dose- and time-dependent decrease in proliferation, compared to media controls, after the administration of as little as 10 nM TPA. This can be reversed in a dose- and time-dependent manner by Bryo. Interestingly, the expression of the transferrin receptor parallelled this effect on proliferation. Furthermore, Jurkat cells grown continuously in 100 nM TPA regained full proliferative capacity after several weeks in culture and transferrin receptor expression returned to near the level seen in untreated Jurkat cells. The chromatographic separation of PKC activity in these three cell lines showed that total PKC activity was dramatically decreased in both the TP100 and BR100 cells when compared to untreated Jurkat cells. However, in the TP100 cells there exists a peak of activity that is activated by Bryo, but not TPA. Western blots of whole cell lysates of the three cell lines showed that PKC-alpha and PKC-beta II were both down-regulated in BR100 and TP100 cells compared to untreated Jurkat cells. PKC-gamma was not detected in any of the cell lines. Therefore, the Bryo-specific peak seen in TP100 cells may be PKC-delta, -epsilon, -zeta, -eta, or a novel PKC isoform. This could provide the basis for a molecular characterization of the differences in PKC activation between phorbol esters and Bryo.  相似文献   

17.
Evidence is provided for direct protein-protein interactions between protein kinase C (PKC) alpha, betaI, betaII, gamma, delta, epsilon, and zeta and members of the Rho family of small GTPases. Previous investigations, based on the immunoprecipitation approach, have provided evidence consistent with a direct interaction, but this remained to be proven. In the study presented here, an in vitro assay, consisting only of purified proteins and the requisite PKC activators and cofactors, was used to determine the effects of Rho GTPases on the activities of the different PKC isoforms. It was found that the activity of PKCalpha was potently enhanced by RhoA and Cdc42 and to a lesser extent by Rac1, whereas the effects on the activities of PKCbetaI, -betaII, -gamma, -delta, -epsilon, and -zeta were much reduced. These results indicate a direct interaction between PKCalpha and each of the Rho GTPases. However, the Rho GTPase concentration dependencies for the potentiating effects on PKCalpha activity differed for each Rho GTPase and were in the following order: RhoA > Cdc42 > Rac1. PKCalpha was activated in a phorbol ester- and Ca(2+)-dependent manner. This was reflected by a substantial decrease in the phorbol ester concentration requirements for activity in the presence of Ca(2+), which for each Rho GTPase was induced within a low nanomolar phorbol ester concentration range. The activity of PKCalpha also was found to be dependent on the nature of the GTP- or GDP-bound state of the Rho GTPases, suggesting that the interaction may be regulated by conformational changes in both PKCalpha and Rho GTPases. Such an interaction could result in significant cross-talk between the distinct pathways regulated by these two signaling elements.  相似文献   

18.
Nitric oxide (NO) in articular chondrocytes regulates differentiation, survival, and inflammatory responses by modulating ERK-1 and -2, p38 kinase, and protein kinase C (PKC) alpha and zeta. In this study, we investigated the effects of the actin cytoskeletal architecture on NO-induced dedifferentiation, apoptosis, cyclooxygenase (COX)-2 expression, and prostaglandin E2 production in articular chondrocytes, with a focus on ERK-1/-2, p38 kinase, and PKC signaling. Disruption of the actin cytoskeleton by cytochalasin D (CD) inhibited NO-induced apoptosis, dedifferentiation, COX-2 expression, and prostaglandin E2 production in chondrocytes cultured on plastic or during cartilage explants culture. CD treatment did not affect ERK-1/-2 activation but blocked the signaling events necessary for NO-induced dedifferentiation, apoptosis, and COX-2 expression such as activation of p38 kinase and inhibition of PKCalpha and -zeta. CD also suppressed activation of downstream signaling of p38 kinase and PKC, such as NF-kappaB activation, p53 accumulation, and caspase-3 activation, which are necessary for NO-induced apoptosis. NO production in articular chondrocytes caused down-regulation of phosphatidylinositol (PI) 3-kinase and Akt activities. The down-regulation of PI 3-kinase and Akt was blocked by CD treatment, and the CD effects on apoptosis, p38 kinase, and PKCalpha and -zeta were abolished by the inhibition of PI 3-kinase with LY294002. Our results collectively indicate that the actin cytoskeleton mediates NO-induced regulatory effects in chondrocytes by modulating down-regulation of PI 3-kinase and Akt, activation of p38 kinase, and inhibition of PKCalpha and -zeta  相似文献   

19.
In articular chondrocytes, nitric oxide (NO) production triggers dedifferentiation and apoptotic cell death that is regulated by the converse functions of two mitogen-activated protein kinase subtypes, extracellular signal-regulated kinase (ERK) and p38 kinase. Since protein kinase C (PKC) transduces signals that influence differentiation, survival, and apoptosis of various cell types, we investigated the roles and underlying molecular mechanisms of action of PKC isoforms in NO-induced dedifferentiation and apoptosis of articular chondrocytes. We report here that among the expressed isoforms, activities of PKCalpha and -zeta were reduced during NO-induced dedifferentiation and apoptosis. Inhibition of PKCalpha activity was independent of NO-induced activation of ERK or p38 kinase and occurred due to blockage of expression. On the other hand, PKCzeta activity was inhibited as a result of NO-induced p38 kinase activation and was observed prior to proteolytic cleavage by a caspase-mediated process to generate enzymatically inactive fragments. Inhibition of PKCalpha or -zeta activities potentiated NO-induced apoptosis, whereas ectopic expression of these isoforms significantly reduced the number of apoptotic cells and blocked dedifferentiation. Ectopic expression of PKCalpha or -zeta did not affect p38 kinase or ERK but inhibited the p53 accumulation and caspase-3 activation that are required for NO-induced apoptosis of chondrocytes. Therefore, our results collectively indicate that p38 kinase-independent and -dependent inhibition of PKCalpha and -zeta, respectively, regulates NO-induced apoptosis and dedifferentiation of articular chondrocytes.  相似文献   

20.
Our laboratory is interested in understanding the regulation of NADPH oxidase activity in human monocyte/macrophages. Protein kinase C (PKC) is reported to be involved in regulating the phosphorylation of NADPH oxidase components in human neutrophils; however, the regulatory roles of specific isoforms of PKC in phosphorylating particular oxidase components have not been determined. In this study calphostin C, an inhibitor for both novel PKC (including PKCdelta, -epsilon, -theta;, and -eta) and conventional PKC (including PKCalpha and -beta), inhibited both phosphorylation and translocation of p47phox, an essential component of the monocyte NADPH oxidase. In contrast, GF109203X, a selective inhibitor of classical PKC and PKCepsilon, did not affect the phosphorylation or translocation of p47phox, suggesting that PKCdelta, -theta;, or -eta is required. Furthermore, rottlerin (at doses that inhibit PKCdelta activity) inhibited the phosphorylation and translocation of p47phox. Rottlerin also inhibited O2 production at similar doses. In addition to pharmacological inhibitors, PKCdelta-specific antisense oligodeoxyribonucleotides were used. PKCdelta antisense oligodeoxyribonucleotides inhibited the phosphorylation and translocation of p47phox in activated human monocytes. We also show, using the recombinant p47phox-GST fusion protein, that p47phox can serve as a substrate for PKCdelta in vitro. Furthermore, lysate-derived PKCdelta from activated monocytes phosphorylated p47phox in a rottlerin-sensitive manner. Together, these data suggest that PKCdelta plays a pivotal role in stimulating monocyte NADPH oxidase activity through its regulation of the phosphorylation and translocation of p47phox.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号