首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Epithelial tubular morphogenesis leading to alteration of organ shape has important physiological consequences. However, little is known regarding the mechanisms that govern epithelial tube morphogenesis. Here, we show that inactivation of Sfrp1 and Sfrp2 leads to reduction in fore-stomach length in mouse embryos, which is enhanced in the presence of the Sfrp5 mutation. In the mono-cell layer of fore-stomach epithelium, cell division is normally oriented along the cephalocaudal axis; in contrast, orientation diverges in the Sfrps-deficient fore-stomach. Cell growth and apoptosis are not affected in the Sfrps-deficient fore-stomach epithelium. Similarly, cell division orientation in fore-stomach epithelium diverges as a result of inactivation of either Stbm/Vangl2, an Fz/PCP component, or Wnt5a. These observations indicate that the oriented cell division, which is controlled by the Fz/PCP pathway, is one of essential components in fore-stomach morphogenesis. Additionally, the small intestine epithelium of Sfrps compound mutants fails to maintain proper apicobasal polarity; the defect was also observed in Wnt5a-inactivated small intestine. In relation to these findings, Sfrp1 physically interacts with Wnt5a and inhibits Wnt5a signaling. We propose that Sfrp regulation of Wnt5a signaling controls oriented cell division and apicobasal polarity in the epithelium of developing gut.  相似文献   

2.
Correct Wnt signaling is required for adipogenesis and alterations occur in Type 2 diabetes mellitus (T2DM). Gene expression studies showed that β-catenin independent Wnt5b was down-regulated in T2DM preadipocytes, while its paralog Wnt5a was unchanged. Our study aimed at defining the expression profile and function of Wnt5a and Wnt5b during adipogenesis by determining their effect on aP2 and PPARγ expression and assessing the level of β-catenin translocation in mouse 3T3-L1 preadipocytes. Additionally, we explored the effect on adipogenic capacity by Wnt5b overexpression in combination with stimulation of the β-catenin dependent or β-catenin independent Wnt signaling. Expression of Wnt5b was, like Wnt5a, down-regulated upon induction of differentiation and both inhibit β-catenin dependent Wnt signaling at the initiation of adipogenesis. Wnt5b additionally appears to be a potent enhancer of adipogenic capacity by stimulation of PPARγ and aP2. Down-regulation of Wnt5b could therefore contribute to decreased adipogenesis observed in T2DM diabetic subjects.  相似文献   

3.
Polycystic kidney disease (PKD) is one of the most common causes of end-stage kidney disease, a devastating disease for which there is no cure. The molecular mechanisms leading to cyst formation in PKD remain somewhat unclear, but many genes are thought to be involved. Wnt5a is a non-canonical glycoprotein that regulates a wide range of developmental processes. Wnt5a works through the planar cell polarity (PCP) pathway that regulates oriented cell division during renal tubular cell elongation. Defects of the PCP pathway have been found to cause kidney cyst formation. Our paper describes a method for developing a zebrafish cystic kidney disease model by knockdown of the wnt5a gene with wnt5a antisense morpholino (MO) oligonucleotides. Tg(wt1b:GFP) transgenic zebrafish were used to visualize kidney structure and kidney cysts following wnt5a knockdown. Two distinct antisense MOs (AUG - and splice-site) were used and both resulted in curly tail down phenotype and cyst formation after wnt5a knockdown. Injection of mouse Wnt5a mRNA, resistant to the MOs due to a difference in primary base pair structure, rescued the abnormal phenotype, demonstrating that the phenotype was not due to “off-target” effects of the morpholino. This work supports the validity of using a zebrafish model to study wnt5a function in the kidney.  相似文献   

4.
5.
The Wnt signaling pathways control many critical developmental and adult physiological processes. In vertebrates, one fundamentally important function of Wnts is to provide directional information by regulating the evolutionarily conserved planar cell polarity (PCP) pathway during embryonic morphogenesis. However, despite the critical roles of Wnts and PCP in vertebrate development and disease, little is known about the molecular mechanisms underlying Wnt regulation of PCP. Here, we have found that the receptor-like tyrosine kinase (Ryk), a Wnt5a-binding protein required in axon guidance, regulates PCP signaling. We show that Ryk interacts with Vangl2 genetically and biochemically, and such interaction is potentiated by Wnt5a. Loss of Ryk in a Vangl2+/− background results in classic PCP defects, including open neural tube, misalignment of sensory hair cells in the inner ear, and shortened long bones in the limbs. Complete loss of both Ryk and Vangl2 results in more severe phenotypes that resemble the Wnt5a−/− mutant in many aspects such as shortened anterior-posterior body axis, limb, and frontonasal process. Our data identify the Wnt5a-binding protein Ryk as a general regulator of the mammalian Wnt/PCP signaling pathway. We show that Ryk transduces Wnt5a signaling by forming a complex with Vangl2 and that Ryk regulates PCP by at least in part promoting Vangl2 stability. As human mutations in WNT5A and VANGL2 are found to cause Robinow syndrome and neural tube defects, respectively, our results further suggest that human mutations in RYK may also be involved in these diseases.  相似文献   

6.
7.
8.
9.
A Wnt-binding site of the WIF-domain of Wnt inhibitory factor-1 was localized by structure-guided arginine-scanning mutagenesis in combination with surface plasmon resonance assays. Our observation that substitution of some residues of WIF resulted in an increased affinity for Wnt5a, but decreased affinity for Wnt3a, suggests that these residues may define the specificity spectrum of WIF for Wnts. These results hold promise for a more specific targeting of Wnt family members with WIF variants in various forms of cancer.

Structured summary of protein interactions

WIFbinds to Wnt7a by surface plasmon resonance (View Interaction)WIFbinds to Wnt4 by surface plasmon resonance (View Interaction)WIF and Wnt3aphysically interact by competition binding (View Interaction 1, 2, 3, 4,5, 6)WIFbinds to Wnt9b by surface plasmon resonance (View Interaction)WIFbinds to Wnt5a by surface plasmon resonance (View Interaction)WIFbinds to Wnt11 by surface plasmon resonance (View Interaction)WIFbinds to Wnt3a by surface plasmon resonance (View Interaction)Wnt-5a and WIFphysically interact by competition binding (View Interaction 1,2, 3, 4, 5, 6)  相似文献   

10.
The anterior-posterior gut pattern is formed from three broad domains: fore-, mid-, and hindgut that have distinct functional, morphological, and molecular boundaries. The stomach demarcates the posterior boundary of the foregut. Avian stomachs are composed of two chambers: the anterior chamber (proventriculus) and the thick muscular posterior chamber (gizzard). Expression of candidate pattern formation control factors are restricted in the chick stomach regions such that Bmp4 and Wnt5a are not expressed in the gizzard. We previously implicated Bmp4 as controlling growth and differentiation of the gut musculature. Bmp4 is not expressed in the developing gizzard but is expressed in the rest of the gut including the adjacent proventriculus and midgut. Bapx1 (Nkx3.2) is expressed in the gizzard musculature but not in the proventriculus or midgut. We show ectopic expression of Bapx1 in the proventriculus results in a gizzard-like morphology and inhibits the normal proventricular expression of Bmp4 and Wnt5a. Overexpression of a reverse-function Bapx1 construct can result in a small stomach and ectopic extension of Bmp4 and Wnt5a expression into the gizzard. We suggest the role of Bapx1 is to regulate the expression of Bmp4 and Wnt5a to pattern the avian stomach.  相似文献   

11.
In injured livers where hepatocyte growth is severely limited, facultative hepatic stem/progenitor cells, termed oval cells in rodents, are known to emerge and contribute to the regeneration process. Here, we investigated a possible involvement of Wnt signaling during mouse oval cell response and found significant upregulation of several Wnt genes including Wnt7a, Wnt7b, and Wnt10a. Accordingly, increase of β-catenin protein was observed in oval cell compartments. Pharmacological activation of the canonical Wnt/β-catenin signaling induced proliferation of cultured hepatic stem/progenitor cell lines. These results together implicate the role of Wnt/β-catenin signaling in adult hepatic stem/progenitor cell response.  相似文献   

12.
The origin, roles and fate of progenitor cells forming synovial joints during limb skeletogenesis remain largely unclear. Here we produced prenatal and postnatal genetic cell fate-maps by mating ROSA-LacZ-reporter mice with mice expressing Cre-recombinase at prospective joint sites under the control of Gdf5 regulatory sequences (Gdf5-Cre). Reporter-expressing cells initially constituted the interzone, a compact mesenchymal structure representing the first overt sign of joint formation, and displayed a gradient-like distribution along the ventral-to-dorsal axis. The cells expressed genes such as Wnt9a, Erg and collagen IIA, remained predominant in the joint-forming sites over time, gave rise to articular cartilage, synovial lining and other joint tissues, but contributed little if any to underlying growth plate cartilage and shaft. To study their developmental properties more directly, we isolated the joint-forming cells from prospective autopod joint sites using a novel microsurgical procedure and tested them in vitro. The cells displayed a propensity to undergo chondrogenesis that was enhanced by treatment with exogenous rGdf5 but blocked by Wnt9a over-expression. To test roles for such Wnt-mediated anti-chondrogenic capacity in vivo, we created conditional mutants deficient in Wnt/β-catenin signaling using Col2-Cre or Gdf5-Cre. Synovial joints did form in both mutants; however, the joints displayed a defective flat cell layer normally abutting the synovial cavity and expressed markedly reduced levels of lubricin. In sum, our data indicate that cells present at prospective joint sites and expressing Gdf5 constitute a distinct cohort of progenitor cells responsible for limb joint formation. The cells appear to be patterned along specific limb symmetry axes and rely on local signaling tools to make distinct contributions to joint formation.  相似文献   

13.
To date, studies have demonstrated the potential functions of microRNAs in cerebral ischemia reperfusion (IR) injury. Herein, we established a middle cerebral artery occlusion (MCAO) model in rats and then subjected them to reperfusion to explore the role of microRNA-374 (miR-374) in cerebral IR injury. After reperfusion, the endogenous miR-374 level decreased, and the expression of its target gene, Wnt5a, increased in brain tissues. Intracerebral pretreatment of miR-374 agomir attenuated cerebral damage induced by IR, including neurobehavioral deficits, infarction, cerebral edema and blood-brain barrier disruption. Moreover, rats pretreated with miR-374 agomir showed a remarkable decrease in apoptotic neurons, which was further confirmed by reduced BAX expression as well as increased BCL-2 and BCL-XL expression. A dual-luciferase reporter assay substantiated that Wnt5a was the target gene of miR-374. miR-374 might protect against brain injury by downregulating Wnt5a in rats after IR. Thus, our study provided a novel mechanism of cerebral IR injury from the perspective of miRNA regulation.  相似文献   

14.
Minseong Kim  Eek-hoon Jho 《FEBS letters》2010,584(18):3923-3928
Wnt/β-catenin signaling plays critical roles in embryonic development and tissue homeostasis in adults by controlling the expression of target genes. We found that expression of ptpro, which encodes a protein tyrosine phosphatase receptor type O (PTPRO), was induced by Wnt/β-catenin signaling in a T cell factor/lymphoid enhancer factor dependent manner. Biochemical assays found that PTPRO interacted with Wnt via its extracellular domain. In addition, ectopic expression of this extracellular domain inhibited Wnt-mediated reporter activity. These results suggest that ptpro is a target gene of Wnt/β-catenin signaling and that PTPRO may function as a novel receptor for Wnt.

Structured summary

MINT-7992076: Ptpro (uniprotkb:Q7TSY7) physically interacts (MI:0915) with Wnt3a (uniprotkb:P27467) by anti tag coimmunoprecipitation (MI:0007)MINT-7992094: Ptpro (uniprotkb:Q7TSY7) physically interacts (MI:0915) with Wnt-3a (uniprotkb:P27467) by cross-linking study (MI:0030)  相似文献   

15.
16.
Wnt signaling mediated by β-catenin has been implicated in early endocardial cushion development, but its roles in later stages of heart valve maturation and homeostasis have not been identified. Multiple Wnt ligands and pathway genes are differentially expressed during heart valve development. At E12.5, Wnt2 is expressed in cushion mesenchyme, whereas Wnt4 and Wnt9b are predominant in overlying endothelial cells. At E17.5, both Wnt3a and Wnt7b are expressed in the remodeling atrioventricular (AV) and semilunar valves. In addition, the TOPGAL Wnt reporter transgene is active throughout the developing AV and semilunar valves at E16.5, with more localized expression in the stratified valve leaflets after birth. In chicken embryo aortic valves, genes characteristic of osteogenic cell lineages including periostin, osteonectin, and Id2 are expressed specifically in the collagen-rich fibrosa layer at E14. Treatment of E14 aortic valve interstitial cells (VICs) in culture with osteogenic media results in increased expression of multiple genes associated with bone formation. Treatment of VIC with Wnt3a leads to nuclear localization of β-catenin and induction of periostin and matrix gla protein but does not induce genes associated with later stages of osteogenesis. Together, these studies provide evidence for Wnt signaling as a regulator of endocardial cushion maturation as well as valve leaflet stratification, homeostasis, and pathogenesis.  相似文献   

17.
The Drosophila larval and adult midguts are derived from two populations of endodermal progenitors that separate from each other in the early embryo. As larval midgut cells differentiate into an epithelial layer, adult midgut progenitors (AMPs) remain as small clusters of proliferating, undifferentiated cells attached to the basal surface of the larval gut epithelium. During the first few hours of metamorphosis, AMPs merge into a continuous epithelial tube that overgrows the larval layer and differentiates into the adult midgut; at the same time, the larval midgut degenerates. As shown in this paper, there is a second, transient pupal midgut that develops from the AMPs at the beginning of metamorphosis and that intercalates between the adult and larval midgut epithelia. Cells of the transient pupal midgut form a multilayered tube that exhibits signs of differentiation, in the form of septate junctions and rudimentary apical microvilli. Some cells of the pupal midgut develop as endocrine cells. The pupal midgut remains closely attached to the degenerating larval midgut cells. Along with these cells, pupal midgut cells are sequestered into the lumen where they form the compact “yellow body.” The formation of a pupal midgut has been reported from several other species and may represent a general feature of intestinal metamorphosis in insects.  相似文献   

18.
Fgf and Wnt signalling have been shown to be required for formation of the otic placode in vertebrates. Whereas several Fgfs including Fgf3, Fgf8 and Fgf10 have been shown to participate during early placode induction, Wnt signalling is required for specification and maintenance of the otic placode, and dorsal patterning of the otic vesicle. However, the requirement for specific members of the Wnt gene family for otic placode and vesicle formation and their potential interaction with Fgf signalling has been poorly defined. Due to its spatiotemporal expression during placode formation in the hindbrain Wnt8a has been postulated as a potential candidate for its specification. Here we have examined the role of Wnt8a during formation of the otic placode and vesicle in mouse embryos. Wnt8a expression depends on the presence of Fgf3 indicating a serial regulation between Fgf and Wnt signalling during otic placode induction and specification. Wnt8a by itself however is neither essential for placode specification nor redundantly required together with Fgfs for otic placode and vesicle formation. Interestingly however, Wnt8a and Fgf3 are redundantly required for expression of Fgf15 in the hindbrain indicating additional reciprocal interactions between Fgf and Wnt signalling. Further reduction of Wnt signalling by the inactivation of Wnt1 in a Wnt8a mutant background revealed a redundant requirement for both genes during morphogenesis of the dorsal portion of the otic vesicle.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号