首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
Sibling neurons in the embryonic central nervous system (CNS) of Drosophila can adopt distinct states as judged by gene expression and axon projection. In the NB4-2 lineage, two even-skipped (eve)-expressing sibling neuronal cells, RP2 and RP2sib, are formed in each hemineuromere. Throughout embryogenesis, only RP2, but not RP2sib, maintains eve expression. In this report, we describe a P-element induced mutation that alters the expression pattern of EVE in RP2 motoneurons in the Drosophila embryonic CNS. The mutation was mapped to a Drosophila homolog of human AF10/AF17 leukemia fusion genes (alf), and therefore named Dalf. Like its human counterparts, Dalf encodes a zinc finger/leucine zipper nuclear protein that is widely expressed in embryonic and larval tissues including neurons and glia. In Dalf mutant embryos, the RP2 motoneuron no longer maintains EVE expression. The effect of the Dalf mutation on EVE expression is RP2-specific and does not affect other characteristics of the RP2 motoneuron. In addition to the embryonic phenotype, Dalf mutant larvae are retarded in their growth and this defect can be rescued by the ectopic expression of a Dalf transgene under the control of a neuronal GAL4 driver. This indicates a requirement for Dalf function in the nervous system for maintaining gene expression and the facilitation of normal growth.  相似文献   

9.
Mutations in severalPolycomb (Pc) group genes cause maternal-effect or zygotic segmentation defects, suggesting thatPc group genes may regulate the segmentation genes ofDrosophila. We show that individuals doubly heterozygous for mutations inpolyhomeotic and six otherPc group genes show gap, pair rule, and segment polarity segmentation defects. We examined double heterozygous combinations ofPc group and segmentation mutations for enhancement of adult and embryonic segmentation defects.Posterior sex combs andpolyhomeotic interact withKrüppel 2 and enhance embryonic phenotypes ofhunchback andknirps, andpolyhomeotic enhanceseven-skipped. Surprisingly, flies carrying duplications ofextra sex combs (esc), that were heterozygous for mutations ofeven-skipped (eve), were extremely subvital. Embryos and surviving adults of this genotype showed strong segmentation defects in even-numbered segments. Antibody studies confirm that expression ofeve is suppressed by duplications ofesc. However,esc duplications have no effect on other gap or pair rule genes tested. To our knowledge, this is only the second triplo-abnormal phenotype associated withPc group genes. Duplications of nine otherPc group genes have no detectable effect oneve. Expression ofengrailed (en) was abnormal in the central nervous systems of mostPc group mutants. These results support a role forPc genes in regulation of some segmentation genes, and suggest thatesc may act differently from otherPc group genes.  相似文献   

10.
11.
In Caenorhabditis elegans, Wnt signaling regulates many asymmetric cell divisions. During embryogenesis, the C. elegans Dishevelled (Dsh) homolog, DSH-2, regulates asymmetric neuroblast division of the ABpl/rpppa blast cell. Dsh is a key intracellular component of both β-catenin dependent and β-catenin independent Wnt pathways. In C. elegans, most of the well-characterized asymmetric cell divisions regulated by Wnts are dependent on β-catenin. In the ABpl/rpppa neuroblast division, however, we determined that DSH-2 regulates cell polarity through a β-catenin independent Wnt pathway. We also established that the C. elegans Wnt homolog, cwn-1, functions to regulate asymmetric division of the ABpl/rpppa blast cell. Our results indicated that cwn-1 does not act alone in this process, and it functions with another redundant ligand that appears not to be a Wnt. Finally, we show widespread requirements for DSH-2 during embryogenesis in the generation of many other neurons. In particular, DSH-2 function is necessary for the correct production of the embryonic ventral cord motor neurons. This study demonstrates a role for DSH-2 and Wnt signaling in neuronal specification during C. elegans embryogenesis.  相似文献   

12.
13.
14.
15.
Pattern formation in Drosophila embryogenesis has been widely investigated as a developmental and evolutionary model of robustness. To ask whether genetic variation for pattern formation is suppressed in this system, artificial selection for divergent egg size was used to challenge the scaling of even‐skipped (eve) pattern formation in mitotic cycle 14 (stage 5) embryos of Drosophila melanogaster. Three‐dimensional confocal imaging revealed shifts in the allometry of eve pair‐rule stripes along both anterior–posterior (A–P) and dorsoventral (D–V) axes as a correlated response to egg size selection, indicating the availability of genetic variation for this buffered trait. Environmental perturbation was not required for the manifestation of this variation. The number of nuclei at the cellular blastoderm stage also changed in response to selection, with large‐egg selected lines having more than 1000 additional nuclei relative to small‐egg lines. This increase in nuclear number in larger eggs does not scale with egg size, however, as nuclear density is inversely correlated with egg length. Nuclear density varies along the A–P axis but does not correlate with the shift in eve stripe allometry between the selection treatments. Despite its macroevolutionary conservation, both eve stripe patterning and blastoderm cell number vary genetically both within and between closely related species.  相似文献   

16.
17.
18.
19.
Insulators can block the action of enhancers on promoters and the spreading of repressive chromatin, as well as facilitating specific enhancer-promoter interactions. However, recent studies have called into question whether the activities ascribed to insulators in model transgene assays actually reflect their functions in the genome. The Drosophila even skipped (eve) gene is a Polycomb (Pc) domain with a Pc-group response element (PRE) at one end, flanked by an insulator, an arrangement also seen in other genes. Here, we show that this insulator has three major functions. It blocks the spreading of the eve Pc domain, preventing repression of the adjacent gene, TER94. It prevents activation of TER94 by eve regulatory DNA. It also facilitates normal eve expression. When Homie is deleted in the context of a large transgene that mimics both eve and TER94 regulation, TER94 is repressed. This repression depends on the eve PRE. Ubiquitous TER94 expression is “replaced” by expression in an eve pattern when Homie is deleted, and this effect is reversed when the PRE is also removed. Repression of TER94 is attributable to spreading of the eve Pc domain into the TER94 locus, accompanied by an increase in histone H3 trimethylation at lysine 27. Other PREs can functionally replace the eve PRE, and other insulators can block PRE-dependent repression in this context. The full activity of the eve promoter is also dependent on Homie, and other insulators can promote normal eve enhancer-promoter communication. Our data suggest that this is not due to preventing promoter competition, but is likely the result of the insulator organizing a chromosomal conformation favorable to normal enhancer-promoter interactions. Thus, insulator activities in a native context include enhancer blocking and enhancer-promoter facilitation, as well as preventing the spread of repressive chromatin.  相似文献   

20.
The Tbx20 orthologue, mab-9, is required for development of the Caenorhabditis elegans hindgut, whereas several vertebrate Tbx20 genes promote heart development. Here we show that Tbx20 orthologues also have a role in motor neuron development that is conserved between invertebrates and vertebrates. mab-9 mutants exhibit guidance defects in dorsally projecting axons from motor neurons located in the ventral nerve cord. Danio rerio (Zebrafish) tbx20 morphants show defects in the migration patterns of motor neuron soma of the facial and trigeminal motor neuron groups. Human TBX20 is expressed in motor neurons in the developing hindbrain of human embryos and we show that human TBX20 can substitute for zebrafish tbx20 in promoting cranial motor neuron migration. mab-9 is also partially able to rescue the zebrafish migration defect, whereas other vertebrate T-box genes cannot. Conversely we show that the human TBX20 T-box domain can rescue motor neuron defects in C. elegans. These data suggest the functional equivalence of Tbx20 orthologues in regulating the development of specific motor neuron groups. We also demonstrate the functional equivalence of human and C. elegans Tbx20 T-box domains for regulating male tail development in the nematode even though these genes play highly diverged roles in organogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号