首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Decapping protein 1a (Dcp1a) is found in P-bodies and functions in mRNA cap removal prior to its degradation. The function and binding partners of Dcp1a have been thoroughly studied, however its expression pattern is still unclear. In this study we have monitored Dcp1a expression along brain development, neuronal differentiation and during cellular stress. We found that Dcp1a is hyperphosphorylated under these physiological conditions. We followed our observations and identified the specific amino acid residues that are phosphorylated. These findings suggest a novel post-translational modification that may influence the function of Dcp1a in response to various physiological cues.  相似文献   

3.
4.
5.
6.
7.
8.
Dissous C  Khayath N  Vicogne J  Capron M 《FEBS letters》2006,580(12):2968-2975
Parasitic helminths remain major pathogens of both humans and animals throughout the world. The success of helminth infections depends on the capacity of the parasite to counteract host immune responses but also to exploit host-derived signal molecules for its development. Recent progress has been made in the characterization of growth factor receptors of various nematode and flatworm parasites with the demonstration that transforming growth factor beta (TGF-beta), epidermal growth factor (EGF) and insulin receptor signalling pathways are conserved in helminth parasites and potentially implicated in the host-parasite molecular dialogue and parasite development.  相似文献   

9.
We have previously demonstrated that Smurf2 is highly expressed in human osteoarthritis (OA) tissue, and overexpression of Smurf2 under the control of the type II collagen promoter (Col2a1) induces an OA-like phenotype in aged Col2a1-Smurf2 transgenic mice, suggesting that Smurf2 is located upstream of a signal cascade which initiates OA development. However, the factors downstream of Smurf2 in this signal cascade and how Smurf2-induced OA is initiated are largely unknown. In this study, we further characterized the phenotypic changes in Col2a1-Smurf2 transgenic and WT articular cartilage from the postnatal stage to adulthood. We found that the articular cartilage degeneration occurring at the cartilage surface in 6 month-old Col2a1-Smurf2 transgenic mice progressed from an expanded hypertrophic domain in the basal layer of the deep articular cartilage at 2.5 weeks of age, which may lead to an accelerated calcification and ectopic ossification of this region at 1 month of age, and aggregation and maturation of articular chondrocytes in the middle and deep zones at 2 months and 4.5 months of age, respectively. Furthermore, we discovered that ectopically expressed Smurf2 interacted with GSK-3β and induced its ubiquitination and subsequent proteasomal degradation, and hence upregulated β-catenin in Col2a1-Smurf2 transgenic chondrocytes ex vivo. It is therefore likely that Smurf2-mediated upregulation of β-catenin through induction of proteasomal degradation of GSK-β in chondrocytes may activate articular chondrocyte maturation and associated alteration of gene expression, the early events of OA.  相似文献   

10.
Plakins in development and disease   总被引:3,自引:0,他引:3  
Plakins are large multi-domain molecules that have various functions to link cytoskeletal elements together and to connect them to junctional complexes. Plakins were first identified in epithelial cells where they were found to connect the intermediate filaments to desmosomes and hemidesmosomes [Ruhrberg, C., and Watt, F.M. (1997). The plakin family: versatile organizers of cytoskeletal architecture. Curr Opin Genet Dev 7, 392-397.]. They were subsequently found to be important for the integrity of muscle cells. Most recently, they have been found in the nervous system, where their functions appear to be more complex, including cross-linking of microtubules (MTs) and actin filaments [Leung, C.L., Zheng, M., Prater, S.M., and Liem, R.K. (2001). The BPAG1 locus: Alternative splicing produces multiple isoforms with distinct cytoskeletal linker domains, including predominant isoforms in neurons and muscles. J Cell Biol 154, 691-697., Leung, C.L., Sun, D., Zheng, M., Knowles, D.R., and Liem, R.K. (1999). Microtubule actin cross-linking factor (MACF): a hybrid of dystonin and dystrophin that can interact with the actin and microtubule cytoskeletons. J Cell Biol 147, 1275-1286.]. These plakins have also indicated their relationship to the spectrin superfamily of proteins and the plakins appear to be evolutionarily related to the spectrins, but have diverged to perform different specialized functions. In invertebrates, a single plakin is present in both Drosophila melanogaster and Caenorhabditis elegans, which resemble the more complex plakins found in mammals [Roper, K., Gregory, S.L., and Brown, N.H. (2002). The 'spectraplakins': cytoskeletal giants with characteristics of both spectrin and plakin families. J Cell Sci 115, 4215-4225.]. In contrast, there are seven plakins found in mammals and most of them have alternatively spliced forms leading to a very complex group of proteins with potential tissue specific functions [Jefferson, J.J., Leung, C.L., and Liem, R.K. (2004). Plakins: goliaths that link cell junctions and the cytoskeleton. Nat Rev Mol Cell Biol 5, 542-553.]. In this review, we will first describe the plakins, desmoplakin, plectin, envoplakin and periplakin and then describe two other mammalian plakins, Bullous pemphigoid antigen 1 (BPAG1) and microtubule actin cross-linking factor 1 (MACF1), that are expressed in multiple isoforms in different tissues. We will also describe the relationship of these two proteins to the invertebrate plakins, shortstop (shot) in Drosophila and VAB-10 in C. elegans. Finally, we will describe an unusual mammalian plakin, called epiplakin.  相似文献   

11.
《Molecular cell》2021,81(16):3246-3261.e11
  1. Download : Download high-res image (142KB)
  2. Download : Download full-size image
  相似文献   

12.
Desmoplakin is a cytoplasmic desmosomal protein that plays a vital role in normal intercellular adhesion. Mutations in desmoplakin can result in devastating skin blistering diseases and arrhythmogenic right ventricular cardiomyopathy, a heart muscle disorder associated with ventricular arrhythmias, heart failure, and sudden death. The desmoplakin N-terminal region is a 1056-amino-acid sequence of unknown structure. It mediates interactions with other desmosomal proteins, is found in a variety of plakin proteins, and spans what has been termed the “plakin domain,” which includes residues 180-1022 and consists of six spectrin repeats (SRs) and an Src homology 3 domain. Herein we elucidate the architecture of desmoplakin's plakin domain, as well as its constituent tandem SRs. Small-angle X-ray scattering analysis shows that the entire plakin domain has an “L” shape, with a long arm and a short arm held at a perpendicular angle. The long arm is 24.0 nm long and accommodates four stably folded SRs arranged in tandem. In contrast, the short arm is 17.9 nm in length and accommodates two independently folded repeats and an extended C-terminus. We show that mutations linked to arrhythmogenic right ventricular cardiomyopathy (K470E and R808C) cause local conformational alterations, while the overall folded structure is maintained. This provides the first structural and mechanistic insights into an entire plakin domain and provides a basis for understanding the critical role of desmoplakin in desmosome function.  相似文献   

13.
Desmosomes are dynamic junctions between cells that maintain the structural integrity of skin and heart tissues by withstanding shear forces. Mutations in component genes cause life-threatening conditions including arrhythmogenic right ventricular cardiomyopathy, and desmosomal proteins are targeted by pathogenic autoantibodies in skin blistering diseases such as pemphigus. Here, we review a set of newly discovered pathogenic alterations and discuss the structural repercussions of debilitating mutations on desmosomal proteins. The architectures of native desmosomal assemblies have been visualized by cryo-electron microscopy and cryo-electron tomography, and the network of protein domain interactions is becoming apparent. Plakophilin and desmoplakin mutations have been discovered to alter binding interfaces, structures, and stabilities of folded domains that have been resolved by X-ray crystallography and NMR spectroscopy. The flexibility within desmoplakin has been revealed by small-angle X-ray scattering and fluorescence assays, explaining how mechanical stresses are accommodated. These studies have shown that the structural and functional consequences of desmosomal mutations can now begin to be understood at multiple levels of spatial and temporal resolution. This review discusses the recent structural insights and raises the possibility of using modeling for mechanism-based diagnosis of how deleterious mutations alter the integrity of solid tissues.  相似文献   

14.
β-Catenin is an evolutionarily conserved molecule that functions as a crucial effector in both cell-to-cell adhesion and Wnt signaling. To gain a better understanding of its role in the development of hair follicles, we cloned the cDNA sequence of the β-catenin gene from the skin of Aohan fine-wool sheep and performed a variety of bioinformatics analyses. We obtained the full-length sequence, which was 4573-bp long and contained a 2346-bp open reading frame encoding a protein of 781 amino acids. The protein had a predicted molecular weight of 85.4 kDa and a theoretical isoelectric point of 5.57. Domain architecture analysis of the β-catenin protein revealed an armadillo repeat region, which is a common feature of β-catenin in other species. The ovine β-catenin gene shares 97.91%, 94.25%, 94.59%, 83.89%, and 89.39% sequence identity with its homologs in Bos taurus, Homo sapiens, Sus scrofa, Gallus gallus, and Mus musculus, respectively, while the amino acid sequence is more than 99% identical with each of these species. The expression of β-catenin mRNA was detected in the heart, liver, spleen, lung, kidney, skin, muscle, and adipose tissue. Expression levels were maximal in the lung and minimal in the muscle, and the difference in expression in these tissues was significant (P < 0.01). Western blot analysis revealed the presence of the β-catenin protein in all tissues examined; expression was lowest in the skin and adipose tissues.  相似文献   

15.
16.
This paper first identified differentially expressed miRNAs associated with early gastric cancer and then respectively constructed relevant connection networks among the identified differentially expressed miRNAs that corresponded to early gastric cancer and control tissues. Twenty-three differentially expressed miRNAs were identified, 18 of which were different with the related results on the same data, and they provide great discriminatory power between patients and controls. There are not only conserved unchangeable sub-networks but also different sub-networks between the two connection networks. From the consistency and differences between two connection networks, we disclosed several new biological features that promote early gastric cancer development. This study shows 23 miRNAs that are early gastric cancer-specific and are worthy to do further experimental studies. The revealed biological features for early gastric cancer will provide new insights into improved understanding of the molecular mechanisms of this disease.  相似文献   

17.
Colin D. White 《FEBS letters》2009,583(12):1817-46
The IQGAP family comprises three proteins in humans. The best characterized is IQGAP1, which participates in protein-protein interactions and integrates diverse signaling pathways. IQGAP2 and IQGAP3 harbor all the domains identified in IQGAP1, but their biological roles are poorly defined. Proteins that bind IQGAP1 include Cdc42 and Rac1, E-cadherin, β-catenin, calmodulin and components of the mitogen-activated protein kinase pathway, all of which are involved in cancer. Here, we summarize the biological functions of IQGAPs that may contribute to neoplasia. Additionally, we review published data which implicate IQGAPs in cancer and tumorigenesis. The cumulative evidence suggests IQGAP1 is an oncogene while IQGAP2 may be a tumor suppressor.  相似文献   

18.
19.
Single disseminated tumor cells (DTC) can be detected in the bone marrow (BM) from 20% to 60% of patients with various tumors including non-small cell lung cancer (NSCLC). Detection of DTC in the BM of NSCLC patients is associated with poor prognosis and may be responsible for metastatic relapse. However, the functional properties of DTC are widely unknown. Here, we performed the first functional analysis of DTC focusing on the activation of the PI3K/Akt signalling pathway and the functional roles of Akt isoforms. In vitro kinase assays revealed a high activity of Akt3 in NSCLC-derived DTC. Proliferation and survival of DTC was reduced by depletion of Akt3 and to a lesser extend by Akt1, but not after depletion of Akt2. The major effect of Akt3 on the proliferation of DTC was associated with an Akt3-mediated regulation of both, cyclin D1 and cyclin D3, whereas Akt1 regulated the expression of cyclin D1 only. In contrast all three Akt isoforms, especially Akt2, were involved in the regulation of migration. Analysis of signalling events downstream of distinct Akt isoforms revealed that expression levels of urokinase-type plasminogen activator and its receptor were decreased after knockdown of Akt1 and Akt3. In addition, EGF-stimulated proliferative and anti-apoptotic signals are mediated by Akt1 and Akt3 in DTC. Finally, by immunofluorescence staining of primary DTC from BM samples of lung cancer patients, pAkt(S473) and Akt3 positive DTC were detected in vivo. Our data demonstrate that Akt1 and notably Akt3 regulate proliferation, survival, migration and EGF-mediated signal transduction in NSCLC-derived DTC.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号