首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sperm guidance is controlled by chemical and physical cues. In many species, Ca2+ bursts in the flagellum govern navigation to the egg. In Arbacia punctulata, a model system of sperm chemotaxis, a cGMP signaling pathway controls these Ca2+ bursts. The underlying Ca2+ channel and its mechanisms of activation are unknown. Here, we identify CatSper Ca2+ channels in the flagellum of A. punctulata sperm. We show that CatSper mediates the chemoattractant-evoked Ca2+ influx and controls chemotactic steering; a concomitant alkalization serves as a highly cooperative mechanism that enables CatSper to transduce periodic voltage changes into Ca2+ bursts. Our results reveal intriguing phylogenetic commonalities but also variations between marine invertebrates and mammals regarding the function and control of CatSper. The variations probably reflect functional and mechanistic adaptations that evolved during the transition from external to internal fertilization.  相似文献   

2.
Isolated canine islets of Langerhans differ from isolated islets of other species (including rodents and man) in that elevated glucose concentrations are unable to stimulate insulin secretion. Here we demonstrate that addition to the perifusate of isobutylmethylxanthine (IBMX), forskolin or 8-CPT-cAMP, all of which enhance cytosolic cAMP, permits insulin secretion in response to glucose, leucine or tolbutamide. These cAMP enhancers increase secretogogue-induced electrical activity in β-cells and restore depolarization-induced, Ca2+-dependent granule exocytosis measured as stepwise increases in membrane capacitance. We propose that the primary permissive action of cAMP is to tightly link Ca2+ entry to insulin granule release, while a secondary action is to tighten the link between glucose metabolism and cell depolarization.  相似文献   

3.
Yan X  Gao S  Tang M  Xi J  Gao L  Zhu M  Luo H  Hu X  Zheng Y  Hescheler J  Liang H 《Cell calcium》2011,50(5):433-443
In fetal mammalian heart, constitutive adenylyl cyclase/cyclic AMP-dependent protein kinase A (cAMP-PKA)-mediated phosphorylation, independent of β-adrenergic receptor stimulation, could under such circumstances play an important role in sustaining the L-type calcium channel current (ICa,L) and regulating other PKA dependent phosphorylation targets. In this study, we investigated the regulation of L-type Ca2+ channel (LTCC) in murine embryonic ventricles. The data indicated a higher phosphorylation state of LTCC at early developmental stage (EDS, E9.5-E11.5) than late developmental stage (LDS, E16.5-E18.5). An intrinsic adenylyl cyclase (AC) activity, PKA activity and basal cAMP concentration were obviously higher at EDS than LDS. The cAMP increase in the presence of isobutylmethylxanthine (IBMX, nonselective phosphodiesterase inhibitor) was further augmented at LDS but not at EDS by chelation of intracellular Ca2+ with 1,2-bis(2-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid (BAPTA)-acetoxymethyl ester (BAPTA-AM). Furthermore, ICa,L increased with time after patch rupture in LDS cardiomyocytes dialyzed with pipette solution containing BAPTA whereas not at EDS. Thus we conclude that the high basal level of LTCC phosphorylation is due to the high intrinsic PKA activity and the high intrinsic AC activity at EDS. The latter is possibly owing to the little or no effect of Ca2+ influx via LTCCs on AC activity, leading to the inability to inhibit AC.  相似文献   

4.
Marine invertebrate oocytes establish chemoattractant gradients that guide spermatozoa towards their source. In sea urchin spermatozoa, this relocation requires coordinated motility changes initiated by Ca2+-driven alterations in sperm flagellar curvature. We discovered that Lytechinus pictus spermatozoa undergo chemotaxis in response to speract, an egg-derived decapeptide previously noted to stimulate non-chemotactic motility alterations in Strongylocentrotus purpuratus spermatozoa. Sperm of both species responded to speract gradients with a sequence of turning episodes that correlate with transient flagellar Ca2+ increases, yet only L. pictus spermatozoa accumulated at the gradient source. Detailed analysis of sperm behavior revealed that L. pictus spermatozoa selectively undergo Ca2+ fluctuations while swimming along negative speract gradients while S. purpuratus sperm generate Ca2+ fluctuations in a spatially non-selective manner. This difference is attributed to the selective suppression of Ca2+ fluctuations of L. pictus spermatozoa as they swim towards the source of the chemoattractant gradient. This is the first study to compare and characterize the motility components that differ in chemotactic and non-chemotactic spermatozoa. Tuning of Ca2+ fluctuations and associated turning episodes to the chemoattractant gradient polarity is a central feature of sea urchin sperm chemotaxis and may be a feature of sperm chemotaxis in general.  相似文献   

5.
The basal 45Ca2+ influx in human red blood cells (RBC) into intact RBC was measured. 45Ca2+ was equilibrated with cells with t1/2=15-20 s and the influx reached the steady state value in about 90-100 s and the steady state level was 1.5±0.2 μmol/lpacked cells (n=6) at 37 °C. The average value of the Ca2+ influx rate was 43.2±8.9 μmol/lpacked cells hour. The rate of the basal influx was pH-dependent with a pH optimum at pH 7.0 and on the temperature with the temperature optimum at 25 °C. The basal Ca2+ influx was saturable with Ca2+ up to 5 mmol/l but at higher extracellular Ca2+ concentrations caused further increase of basal Ca2+ influx. The 45Ca2+ influx was stimulated by addition of submicromolar concentrations of phorbol esters (phorbol 12-myristate-13-acetate (PMA) and phorbol-12,13-dibutyrate (PDBu)) and forskolin. Uncoupler (3,3′,4′,5-tetrachloro-salicylanilide (TCS) 10−6-10−5 mol/l) inhibited in part the Ca2+ influx. The results show that the basal Ca2+ influx is mediated by a carrier and is under control of intracellular regulatory circuits. The effect of uncoupler shows that the Ca2+ influx is in part driven by the proton-motive force and indicates that the influx and efflux of Ca2+ are coupled via the RBC H+ homeostasis.  相似文献   

6.
Pituitaries were collected from a common carp,yprinss carpi, belonging to vitellogenic phase and cells were disaggregated by using 0.3% collagenase and 0.05% tsypsin. Enzymatically dispersed cells were incubatedin vitro in Ca2+-free medium to observe the effect ofCanna punctatus GnRH (cGnRH) and Ca2+ on pituitary cell cAMP accumulation. Addition of cGnRH (20 Big) to pituitary cell incubation (6 × 104 cells/well) containing 4 mM theophylline, a phosphodiesterase inhibitor, caused two-fold increase of cAMP accumulation in comparison to control, Addition of Ca2+ (2 mM) to cGnRH further augmented cAMP accumulation, i.e., four-fold as compared to control. Increasing concentrations of cGnRH in the presence of Ca2+ resulted in a dose-dependent increase in cAMP accumulation. To examine the specificity of Ca2+ augmentory effect on cGnRH-stimulated pituitary cell cAMP accumulation, a specific Ca2+-channel blocker, verapamil was used, At 3 μM dose verapamil completely waived Ca2+-augmentation of cGnRH stimulatory effect on cAMP. Interestingly, verapamil also significantly inhibited cGnRH stimulation of cAMP in the Ca2+-free medium. Extent of Ca2+ plus cGnRH stimulatory effect on cAMP was further increased by the addition of 25 pmol of calmodulin, a Ca2+-carrier protein, Addition of verapamil to this system strongly inhibited Ca2+ and ealmodulin augnientory effect on cGnRH. Reduced level of cAMP in the pituitary cell due to verapamil was even lower than that of cGnRH plus ealmodulin incubation. Data indicates a contamination of Ca2+ in an apparently Ca2+-free medium, Results suggest that in lower vertebrate, i.e., fish, GnRH stimulation of pituitary cell cAMP is dependent on extracellulnr Ca2+ and incubation of pituitary cell in Ca2+-free medium is truly not free of Ca2+.  相似文献   

7.
We have monitored electrical activity, voltage-gated Ca2+ currents, and exocytosis in single rat glucagon-secreting pancreatic A-cells. The A-cells were electrically excitable and generated spontaneous Na+- and Ca2+-dependent action potentials. Under basal conditions, exocytosis was tightly linked to Ca2+ influx through ω-conotoxin-GVIA–sensitive (N-type) Ca2+ channels. Stimulation of the A-cells with adrenaline (via β-adrenergic receptors) or forskolin produced a greater than fourfold PKA-dependent potentiation of depolarization-evoked exocytosis. This enhancement of exocytosis was due to a 50% enhancement of Ca2+ influx through L-type Ca2+ channels, an effect that accounted for <30% of the total stimulatory action. The remaining 70% of the stimulation was attributable to an acceleration of granule mobilization resulting in a fivefold increase in the number of readily releasable granules near the L-type Ca2+ channels.  相似文献   

8.
The adaptation to extreme concentrations of Ca2+ and its consequence on the properties of the 45Ca2+ transport were studied in submerged mycelia of Trichoderma viride. The adaptation to low [Ca2+]o did not cause changes in kinetic parameters of the 45Ca2+ influx but the adaptation to high [Ca2+]o increased the KM(Ca2+). The Vmax of the 45Ca2+ influx decreased with the age of (non-adapted) mycelia with concomitant decrease of the KM(Ca2+) these changes were prevented in mycelia adapted to high Ca2+. High [Ca2+]o decreased the stimulation by the uncoupler, 3, 3′, 4′, 5-tetrachloro salicylanilide (TCS) (30 μM), as compared to the control, whereas the Ca2+ chelator, EGTA, stimulated it. In the aged mycelia, the stimulation by TCS of the 45Ca2+ influx faded away, in parallel with the activity of the H+-ATPase. The 45Ca2+ efflux from mycelia was affected by TCS in a similar way as the 45Ca2+ influx. The results demonstrate the adaptive responses of transport processes participating in the mycelial Ca2+ homeostasis and ageing are in agreement with a notion that both Ca2+-influx and-efflux are coupled by the H+-homeostasis at the plasma membrane.  相似文献   

9.
It is well established that reduction of Ca2+ influx through L-type voltage-dependent Ca2+ channel (L-type VDCC), or increase of cytosolic cAMP concentration ([cAMP]c), inhibit contractile activity of smooth muscles in response to transmitters released from sympathetic nerves. Surprisingly, in this work we observed that simultaneous administration of L-type VDCC blocker (verapamil) and [cAMP]c enhancers (rolipram, IBMX and forskolin) potentiated purinergic contractions evoked by electrical field stimulation of rat vas deferens, instead of inhibiting them. These results, including its role in sympathetic transmission, can be considered as a “calcium paradox”. On the other hand, this potentiation was prevented by reduction of [cAMP]c by inhibition of adenylyl cyclase (SQ 22536) or depletion of Ca2+ storage of sarco-endoplasmic reticulum by blockade of Ca2+ reuptake (thapsigargin). In addition, cytosolic Ca2+ concentration ([Ca2+]c) evaluated by fluorescence microscopy in rat adrenal medullary slices was significantly reduced by verapamil or rolipram. In contrast, simultaneous incubation of adrenal slices with these compounds significantly increased [Ca2+]c. This effect was prevented by thapsigargin. Thus, a reduction of [Ca2+]c due to blockade of Ca2+ influx through L-type VDCC could stimulate adenylyl cyclase activity increasing [cAMP]c thereby stimulating Ca2+ release from endoplasmic reticulum, resulting in augmented transmitter release in sympathetic nerves and contraction.  相似文献   

10.
Exocytosis is evoked by intracellular signals, including Ca2+ and protein kinases. We determined how such signals interact to promote exocytosis in exocrine pancreatic duct epithelial cells (PDECs). Exocytosis, detected using carbon-fiber microamperometry, was stimulated by [Ca2+]i increases induced either through Ca2+ influx using ionomycin or by activation of P2Y2 or protease-activated receptor 2 receptors. In each case, the exocytosis was strongly potentiated when cyclic AMP (cAMP) was elevated either by activating adenylyl cyclase with forskolin or by activating the endogenous vasoactive intestinal peptide receptor. This potentiation was completely inhibited by H-89 and partially blocked by Rp-8-Br-cAMPS, inhibitors of protein kinase A. Optical monitoring of fluorescently labeled secretory granules showed slow migration toward the plasma membrane during Ca2+ elevations. Neither this Ca2+-dependent granule movement nor the number of granules found near the plasma membrane were detectably changed by raising cAMP, suggesting that cAMP potentiates Ca2+-dependent exocytosis at a later stage. A kinetic model was made of the exocytosis stimulated by UTP, trypsin, and Ca2+ ionophores with and without cAMP increase. In the model, without a cAMP rise, receptor activation stimulates exocytosis both by Ca2+ elevation and by the action of another messenger(s). With cAMP elevation the docking/priming step for secretory granules was accelerated, augmenting the releasable granule pool size, and the Ca2+ sensitivity of the final fusion step was increased, augmenting the rate of exocytosis. Presumably both cAMP actions require cAMP-dependent phosphorylation of target proteins. cAMP-dependent potentiation of Ca2+-induced exocytosis has physiological implications for mucin secretion and, possibly, for membrane protein insertion in the pancreatic duct. In addition, mechanisms underlying this potentiation of slow exocytosis may also exist in other cell systems.  相似文献   

11.
Plant Ca2+ signals are involved in a sizable array of intracellular signaling pathways after pest invasion. Upon herbivore feeding there is a dramatic Ca2+ influx, followed by the activation of Ca2+-dependent signal transduction pathways that include interacting downstream networks of kinases for defense responses. Notably, Ca2+-binding sensory proteins such as Ca2+-dependent protein kinases (CPKs) have recently been documented to mediate the signaling following Ca2+ influx after herbivory, in phytohormone-independent manners. Here, we review the sequence of signal transductions triggered by herbivory-evoked Ca2+ signaling leading to CPK actions for defense responses, and discuss in a comparative way the involvement of CPKs in the signal transduction of a variety of other biotic and abiotic stresses.  相似文献   

12.
One cause of progressive pulmonary fibrosis is dysregulated wound healing after lung inflammation or damage in patients with idiopathic pulmonary fibrosis and severe acute respiratory distress syndrome. The mechanical forces are considered to regulate pulmonary fibrosis via activation of lung fibroblasts. In this study, the effects of mechanical stretch on the intracellular Ca2+ concentration ([Ca2+]i) and ATP release were investigated in primary human lung fibroblasts. Uniaxial stretch (10–30% in strain) was applied to fibroblasts cultured in a silicone chamber coated with type I collagen using a stretching apparatus. Following stretching and subsequent unloading, [Ca2+]i transiently increased in a strain-dependent manner. Hypotonic stress, which causes plasma membrane stretching, also transiently increased the [Ca2+]i. The stretch-induced [Ca2+]i elevation was attenuated in Ca2+-free solution. In contrast, the increase of [Ca2+]i by a 20% stretch was not inhibited by the inhibitor of stretch-activated channels GsMTx-4, Gd3+, ruthenium red, or cytochalasin D. Cyclic stretching induced significant ATP releases from fibroblasts. However, the stretch-induced [Ca2+]i elevation was not inhibited by ATP diphosphohydrolase apyrase or a purinergic receptor antagonist suramin. Taken together, mechanical stretch induces Ca2+ influx independently of conventional stretch-sensitive ion channels, the actin cytoskeleton, and released ATP.  相似文献   

13.
Ca2+ homeostasis controls a diversity of cellular processes including proliferation and apoptosis. A very important aspect of Ca2+ signaling is how different Ca2+ signals are translated into specific cell functions. In T cells, Ca2+ signals are induced following the recognition of antigen by the T cell receptor and depend mainly on Ca2+ influx through store-operated CRAC channels, which are mediated by ORAI proteins following their activation by STIM proteins. The complete absence of Ca2+ influx caused by mutations in Stim1 and Orai1 leads to severe immunodeficiency. Here we summarize how Ca2+ signals are tuned to regulate important T cell functions as proliferation, apoptosis and tolerance, the latter one being a special state of immune cells in which they can no longer respond properly to an otherwise activating stimulus. Perturbations of Ca2+ signaling may be linked to immune suppressive diseases and autoimmune diseases.  相似文献   

14.
Ca2+ plays a complex role in the differentiation of committed pre-adipocytes into mature, fat laden adipocytes. Stim1 is a single pass transmembrane protein that has an essential role in regulating the influx of Ca2+ ions through specific plasma membrane store-operated Ca2+ channels. Stim1 is a sensor of endoplasmic reticulum Ca2+ store content and when these stores are depleted ER-localized Stim1 interacts with molecular components of store-operated Ca2+ channels in the plasma membrane to activate these channels and induce Ca2+ influx. To investigate the potential role of Stim1 in Ca2+-mediated adipogenesis, we investigated the expression of Stim1 during adipocyte differentiation and the effects of altering Stim1 expression on the differentiation process. Western blotting revealed that Stim1 was expressed at low levels in 3T3-L1 pre-adipocytes and was upregulated 4 days following induction of differentiation. However, overexpression of Stim1 potently inhibited their ability to differentiate and accumulate lipid, and reduced the expression of C/EBP alpha and adiponectin. Stim1-mediated differentiation was shown to be dependent on store-operated Ca2+ entry, which was increased upon overexpression of Stim1. Overexpression of Stim1 did not disrupt cell proliferation, mitotic clonal expansion or subsequent growth arrest. siRNA-mediated knockdown of endogenous Stim1 had the opposite effect, with increased 3T3-L1 differentiation and increased expression of C/EBP alpha and adiponectin. We thus demonstrate for the first time the presence of store-operated Ca2+ entry in 3T3-L1 adipocytes, and that Stim1-mediated Ca2+ entry negatively regulates adipocyte differentiation. We suggest that increased expression of Stim1 during 3T3-L1 differentiation may act, through its ability to modify the level of Ca2+ influx through store-operated channels, to balance the level of differentiation in these cells in vitro.  相似文献   

15.
The single transmembrane-spanning Ca2+-binding protein, STIM1, has been proposed to function as a Ca2+ sensor that links the endoplasmic reticulum to the activation of store-operated Ca2+ channels. In this study, the presence, subcellular localization and function of STIM1 in store-operated Ca2+ entry in oocytes was investigated using the pig as a model. Cloning and sequence analysis revealed the presence of porcine STIM1 with a coding sequence of 2058 bp. In oocytes with full cytoplasmic Ca2+ stores, STIM1 was localized predominantly in the inner cytoplasm as indicated by immunocytochemistry or overexpression of human STIM1 conjugated to the yellow fluorescent protein. Depletion of the Ca2+ stores was associated with redistribution of STIM1 along the plasma membrane. Increasing STIM1 expression resulted in enhanced Ca2+ influx after store depletion and subsequent Ca2+ add-back; the influx was inhibited when the oocytes were pretreated with lanthanum, a specific inhibitor of store-operated Ca2+ channels. When STIM1 expression was suppressed using siRNAs, there was no change in cytosolic free Ca2+ levels in the store-depleted oocytes after Ca2+ add-back. The findings suggest that in oocytes, STIM1 serves as a sensor of Ca2+ store content that after store depletion moves to the plasma membrane to stimulate store-operated Ca2+ entry.  相似文献   

16.
Reactive oxygen species (ROS) play critical roles in cell death, diseases, and normal cellular processes. TRPM2 is a member of transient receptor potential (TRP) protein superfamily and forms a Ca2+-permeable nonselective cation channel activated by ROS, specifically by hydrogen peroxide (H2O2), and at least in part via second-messenger mechanisms. Accumulating evidence has indicated that TRPM2 mediates multiple cellular responses, after our finding that Ca2+ influx via TRPM2 regulates H2O2-induced cell death. Recently, we have demonstrated that Ca2+ influx through TRPM2 induces chemokine production in monocytes and macrophages, which aggravates inflammatory neutrophil infiltration in mice. However, understanding is still limited for in vivo physiological or pathophysiological significance of ROS-induced TRPM2 activation. In this review, we summarize mechanisms underlying activation of TRPM2 channels by oxidative stress and downstream biological responses, and discuss the biological importance of oxidative stress-activated TRP channels.  相似文献   

17.
The slow Ca2+ channels (L-type) of the heart are stimulated by cAMP. Elevation of cAMP produces a very rapid increase in number of slow channels available for voltage activation during excitation. The probability of a Ca2+ channel opening and the mean open time of the channel are increased. Therefore, any agent that increases the cAMP level of the myocardial cell will tend to potentiate ICa, Ca2+ influx, and contraction. The action of cAMP is mediated by PK-A and phosphorylation of the slow Ca2+ channel protein or an associated regulatory protein (stimulatory type). The myocardial slow Ca2+ channels are also rogulated by cGMP, in a manner that is opposite orantagonistic to that of cAMP. We have demonstrated this at both the macroscople level (whole-cell voltage clamp) and the single-channel level. The effect of cGMP is mediated by PK-G and phosphorylation of a protein, as for example, a regulatory protein (inhibitory-type) associated with the Ca2+ channel. Introduction of PK-G intracellularly causes a relatively rapid inhibition of ICa(L) in both chick and rat heart cells. Such inhibition occurs for both the basal and stimulated ICa(L). In addition, the cGMP/PK-G system was reported to stimulate a phosphatase that dephosphorylates the Ca2+ channel. In addition to the slower indirect pathway—exerted via cAMP/PK-A—there is a faster more-direct pathway for ICa(L) stimulation by the -adrenergic receptor. This latter pathway involves direct modulation of the channel activity by the alpha subunit (s*) of the Gs-protein. In vascular smooth muscle cells the two pathways (direct and indirect) also appear to be present, although the indirect pathway producesinhibition of ICa(L). PK-C and calmodulin-PK also may play roles in regulation of the myocardial slow Ca2+ channels. Both of these protein kinases stimulate the activity of these channels. Thus, it appears that the slow Ca2+ channel is a complex structure, including perhaps several associated regulatory proteins, which can be regulated by a number of factors intrinsic and extrinsic to the cell, and thereby control can be exercised over the force of contraction of the heart.This review-type article was prepared by modifying an article published in a book by Sperelakiset al., 1994.  相似文献   

18.
The voltage-dependent slow channels in the myocardial cell membrane are the major pathway by which Ca2+ ions enter the cell during excitation for initiation and regulation of the force of contraction of cardiac muscle. The slow channels have some special properties, including functional dependence on metabolic energy, selective blockade by acidosis, and regulation by the intracellular cyclic nucleotide levels. Because of these special properties of the slow channels, Ca2+ influx into the myocardial cell can be controlled by extrinsic factors (such as autonomic nerve stimulation or circulating hormones) and by intrinsic factors (such as cellular pH or ATP level). The slow Ca2+ channels of the heart are regulated by cAMP in a stimulatory fashion. Elevation of cAMP produces a very rapid increase in number of slow channels available for voltage activation during excitation. The probability of a slow channel opening and the mean open time of the channel are increased. Therefore, any agent that increases the cAMP level of the myocardial cell will tend to potentiate Isi, Ca2+ influx, and contraction. The myocardial slow Ca2+ channels are also regulated by cGMP, in a manner that is opposite to that of CAMP. The effect of cGMP is presumably mediated by means of phosphorylation of a protein, as for example, a regulatory protein (inhibitory-type) associated with the slow channel. Preliminary data suggest that calmodulin also may play a role in regulation of the myocardial slow Ca2+ channels, possibly mediated by the Ca2+-calmodulin-protein kinase and phosphorylation of some regulatory-type of protein. Thus, it appears that the slow Ca2+ channel is a complex structure, including perhaps several associated regulatory proteins, which can be regulated by a number of extrinsic and intrinsic factors.VSM cells contain two types of Ca2+ channels: slow (L-type) Ca2+ channels and fast (T-type) Ca2+ channels. Although regulation of voltage-dependent Ca2+ slow channels of VSM cells have not been fully clarified yet, we have made some progress towards answering this question. Slow (L-type, high-threshold) Ca2+ channels may be modified by phosphorylation of the channel protein or an associated regulatory protein. In contrast to cardiac muscle where cAMP and cGMP have antagonistic effects on Ca2+ slow channel activity, in VSM, cAMP and cGMP have similar effects, namely inhibition of the Ca2+ slow channels. Thus, any agent that elevates cAMP or cGMP will inhibit Ca2+ influx, and thereby act to produce vasodilation. The Ca2+ slow channels require ATP for activity, with a K0.5 of about 0.3 mM. C-kinase may stimulate the Ca2+ slow channels by phosphorylation. G-protein may have a direct action on the Ca2+ channels, and may mediate the effects of activation of some receptors. These mechanisms of Ca2+ channel regulation may be invoked during exposure to agonists or drugs, which change second messenger levels, thereby controlling vascular tone.  相似文献   

19.
BackgroundCa2+/calmodulin-dependent protein kinase kinase (CaMKK) is a pivotal activator of CaMKI, CaMKIV and 5’-AMP-activated protein kinase (AMPK), controlling Ca2+-dependent intracellular signaling including various neuronal, metabolic and pathophysiological responses. Recently, we demonstrated that CaMKKβ is feedback phosphorylated at Thr144 by the downstream AMPK, resulting in the conversion of CaMKKβ into Ca2+/CaM-dependent enzyme. However, the regulatory phosphorylation of CaMKKβ at Thr144 in intact cells and in vivo remains unclear.MethodsAnti-phosphoThr144 antibody was used to characterize the site-specific phosphorylation of CaMKKβ in immunoprecipitated samples from mouse cerebellum and in transfected mammalian cells that were treated with various agonists and protein kinase inhibitors. CaMKK activity assay and LC-MS/MS analysis were used for biochemical characterization of phosphorylated CaMKKβ.ResultsOur data suggest that the phosphorylation of Thr144 in CaMKKβ is rapidly induced by cAMP/cAMP-dependent protein kinase (PKA) signaling in CaMKKβ-transfected HeLa cells, that is physiologically relevant in mouse cerebellum. We confirmed that the catalytic subunit of PKA was capable of directly phosphorylating CaMKKβ at Thr144 in vitro and in transfected cells. In addition, the basal phosphorylation of CaMKKβ at Thr144 in transfected HeLa cells was suppressed by AMPK inhibitor (compound C). PKA-catalyzed phosphorylation reduced the autonomous activity of CaMKKβ in vitro without significant effect on the Ca2+/CaM-dependent activity, resulting in the conversion of CaMKKβ into Ca2+/CaM-dependent enzyme.ConclusioncAMP/PKA signaling may confer Ca2+-dependency to the CaMKKβ-mediated signaling pathway through direct phosphorylation of Thr144 in intact cells.General significanceOur results suggest a novel cross-talk between cAMP/PKA and Ca2+/CaM/CaMKKβ signaling through regulatory phosphorylation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号