首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 38 毫秒
1.
In this study, we identified and characterized an N-ethyl-N-nitrosourea (ENU) induced mutation in Usp14 (nmf375) that leads to adult-onset neurological disease. The nmf375 mutation causes aberrant splicing of Usp14 mRNA, resulting in a 95% reduction in USP14. We previously showed that loss of USP14 in ataxia (ax J) mice results in reduced ubiquitin levels, motor endplate disease, Purkinje cell axonal dystrophy and decreased hippocampal paired pulse facilitation (PPF) during the first 4-6 weeks of life, and early postnatal lethality by two months of age. Although the loss of USP14 is comparable between the nmf375 and ax J mice, the nmf375 mice did not exhibit these ax J developmental abnormalities. However, by 12 weeks of age the nmf375 mutants present with ubiquitin depletion and motor endplate disease, indicating a continual role for USP14-mediated regulation of ubiquitin pools and neuromuscular junction (NMJ) structure in adult mice. The observation that motor endplate disease was only seen after ubiquitin depletion suggests that the preservation of NMJ structure requires the stable maintenance of synaptic ubiquitin pools. Differences in genetic background were shown to affect ubiquitin expression and dramatically alter the phenotypes caused by USP14 deficiency.  相似文献   

2.
Regulated protein degradation by the proteasome plays an essential role in the enhancement and suppression of signaling pathways in the nervous system. Proteasome-associated factors are pivotal in ensuring appropriate protein degradation, and we have previously demonstrated that alterations in one of these factors, the proteasomal deubiquitinating enzyme ubiquitin-specific protease 14 (Usp14), can lead to proteasome dysfunction and neurological disease. Recent studies in cell culture have shown that Usp14 can also stabilize the expression of over-expressed, disease-associated proteins such as tau and ataxin-3. Using Usp14-deficient axJ mice, we investigated if loss of Usp14 results in decreased levels of endogenous tau and ataxin-3 in the nervous system of mice. Although loss of Usp14 did not alter the overall neuronal levels of tau and ataxin-3, we found increased levels of phosphorylated tau that correlated with the onset of axonal varicosities in the Usp14-deficient mice. These changes in tau phosphorylation were accompanied by increased levels of activated phospho-Akt, phosphorylated MAPKs, and inactivated phospho-GSK3β. However, genetic ablation of tau did not alter any of the neurological deficits in the Usp14-deficient mice, demonstrating that increased levels of phosphorylated tau do not necessarily lead to neurological disease. Due to the widespread activation of intracellular signaling pathways induced by the loss of Usp14, a better understanding of the cellular pathways regulated by the proteasome is required before effective proteasomal-based therapies can be used to treat chronic neurological diseases.  相似文献   

3.
Ataxia represents a pathological coordination failure that often involves functional disturbances in cerebellar circuits. Purkinje cells (PCs) characterize the only output neurons of the cerebellar cortex and critically participate in regulating motor coordination. Although different genetic mutations are known that cause ataxia, little is known about the underlying cellular mechanisms. Here we show that a mutated ax J gene locus, encoding the ubiquitin-specific protease 14 (Usp14), negatively influences synaptic receptor turnover. Ax J mouse mutants, characterized by cerebellar ataxia, display both increased GABAA receptor (GABAAR) levels at PC surface membranes accompanied by enlarged IPSCs. Accordingly, we identify physical interaction of Usp14 and the GABAAR α1 subunit. Although other currently unknown changes might be involved, our data show that ubiquitin-dependent GABAAR turnover at cerebellar synapses contributes to ax J-mediated behavioural impairment.  相似文献   

4.
To test if ephrin B1 overexpression enhances bone mass, we generated transgenic mice overexpressing ephrin B1 under the control of a 3.6 kb rat collagen 1A1 promoter (Col3.6-Tgefnb1). Col3.6-Tgefnb1 mice express 6-, 12- and 14-fold greater levels of full-length ephrin B1 protein in bone marrow stromal cells, calvarial osteoblasts, and osteoclasts, respectively. The long bones of both genders of Col3.6-Tgefnb1 mice have increased trabecular bone volume, trabecular number, and trabecular thickness and decreased trabecular separation. Enhanced bone formation and decreased bone resorption contributed to this increase in trabecular bone mass in Col3.6-Tgefnb1 mice. Consistent with these findings, our in vitro studies showed that overexpression of ephrin B1 increased osteoblast differentiation and mineralization, osterix and collagen 1A1 expression in bone marrow stromal cells. Interaction of ephrin B1 with soluble clustered EphB2-Fc decreased osteoclast precursor differentiation into multinucleated cells. Furthermore, we demonstrated that the mechanical loading-induced increase in EphB2 expression and newly formed bone were significantly greater in the Col3.6-Tgefnb1 mice than in WT littermate controls. Our findings that overexpression of ephrin B1 in bone cells enhances bone mass and promotes a skeletal anabolic response to mechanical loading suggest that manipulation of ephrin B1 actions in bone may provide a means to sensitize the skeleton to mechanical strain to stimulate new bone formation.  相似文献   

5.
The reproductive system of 319 individuals of the Schrenckii salamander (Salamandrella schrenckii Strauch 1870) (synonym S. tridactyla sensu (Kuz’min et al., 2008) from a Khabarovsk population has been studied before wintering and during the spawning of animals. In the fall, all adult males had enlarged testes filled with bundles of spermatozoa and no spermatozoa in the spermaducts. Females had large pigmented ova in the ovaries and empty expanded oviducts. In the spring, only mature S. schrenckii individuals were found in the water; the entire spectrum of physiological states from the preparation for breeding to its end was noted in them. The preovulatory stage, ovulation, pregnancy, and spawning were registered in females; the predominance of spermatozoa in the testes or in spermaducts, or almost complete absence of them in the reproductive system, and different degrees of hypertrophy of spermaducts were noted in males. These differences are related to the different times of arrival of individuals to the spawning pond. The material analyzed evidences the yearly breeding of S. schrenckii. S. schrenckii differs from S. keyserlingii in the type and duration of the reproductive cycle, sizes and morphology of spermatozoa, and structure and functioning of ovaries (Saveliev et al., 1993; Kuranova and Saveliev, 2006). The majority of the reviewed characteristics of S. schrenckii are similar to those of the allied genus representatives: Hynobius nigrescens and H. retardatus (Hasumi et al., 1990; Iwasawa et al., 1992; Hasumi, 1996a).  相似文献   

6.

Background

The C-terminal Eps15 homology domain-containing protein 1 (EHD1) is ubiquitously expressed and regulates the endocytic trafficking and recycling of membrane components and several transmembrane receptors. To elucidate the function of EHD1 in mammalian development, we generated Ehd1 -/- mice using a Cre/loxP system.

Results

Both male and female Ehd1 -/- mice survived at sub-Mendelian ratios. A proportion of Ehd1 -/- mice were viable and showed smaller size at birth, which continued into adulthood. Ehd1 -/- adult males were infertile and displayed decreased testis size, whereas Ehd1 -/- females were fertile. In situ hybridization and immunohistochemistry of developing wildtype mouse testes revealed EHD1 expression in most cells of the seminiferous epithelia. Histopathology revealed abnormal spermatogenesis in the seminiferous tubules and the absence of mature spermatozoa in the epididymides of Ehd1 -/- males. Seminiferous tubules showed disruption of the normal spermatogenic cycle with abnormal acrosomal development on round spermatids, clumping of acrosomes, misaligned spermatids and the absence of normal elongated spermatids in Ehd1 -/- males. Light and electron microscopy analyses indicated that elongated spermatids were abnormally phagocytosed by Sertoli cells in Ehd1 -/- mice.

Conclusions

Contrary to a previous report, these results demonstrate an important role for EHD1 in pre- and post-natal development with a specific role in spermatogenesis.  相似文献   

7.
The ubiquitin-proteasome system plays an important role in spermatogenesis. However, the functions of deubiquitinating enzymes in this process remain poorly characterized. We previously showed that the deubiquitinating enzyme USP2 is induced in late elongating spermatids. To identify its function, we generated mice lacking USP2. Usp2 -/- mice appeared normal, and the weights of major organs, including the testis, did not differ from wild type (Usp2 +/+). However, although the numbers of testicular spermatids and epididymal spermatozoa were normal in Usp2 -/- males, these animals had a severe defect in fertility, yielding only 12% as many offspring as Usp2 +/+ littermates. Spermatogenesis in Usp2 -/- mice was morphologically normal except for the presence of abnormal aggregations of elongating spermatids and formation of multinucleated cells in some tubules. The epididymal epithelium was morphologically normal in Usp2 -/- mice, but some abnormal cells other than sperm were present in the lumen. Usp2 -/- epididymal spermatozoa manifested normal motility when incubated in culture media, but rapidly became immotile when incubated in PBS in contrast to Usp2 +/+ spermatozoa, which largely maintained motility under this condition. Usp2 -/- and +/+ spermatozoa underwent acrosome reactions in vitro with similar frequency. In vitro fertilization assays demonstrated a severe defect in the ability of Usp2 -/- spermatozoa to fertilize eggs. This could be bypassed by intracytoplasmic sperm injection or removal of the zona pellucida, which resulted in fertilization rates similar to that of Usp2 +/+ mice. We demonstrate for the first time, using mouse transgenic approaches, a role for the ubiquitin system in fertilization.  相似文献   

8.
Targeted disruption of the inhibin α gene (Inha-/-) in mice results in an ovarian phenotype of granulosa cell tumors that renders the animals infertile. Little is known about the reproductive defects prior to tumor development. Here, we report novel data on early follicle dynamics in Inha-/- mice, which demonstrate that inhibin α has important consequences upon follicle development. Morphological changes in both germ and somatic cells were evident in postnatal day 12 ovaries, with Inha/ mice exhibiting numerous multilayered follicles that were far more advanced than those observed in age-matched controls. These changes were accompanied by alterations in follicle dynamics such that Inha/ ovaries had fewer follicles in the resting pool and more committed in the growth phase. Absence of inhibin α resulted in advanced follicular maturation as marked by premature loss of anti-Müllerian hormone (AMH) in secondary follicles. Additionally, gene expression analysis revealed changes in factors known to be vital for oocyte and follicle development. Together, these data provide key evidence to suggest that regulation of the inhibin/activin system is essential for early folliculogenesis in the prepubertal mouse ovary.  相似文献   

9.
The deubiquitylating enzyme Usp9x is highly expressed in the developing mouse brain, and increased Usp9x expression enhances the self-renewal of neural progenitors in vitro. USP9X is a candidate gene for human neurodevelopmental disorders, including lissencephaly, epilepsy and X-linked intellectual disability. To determine if Usp9x is critical to mammalian brain development we conditionally deleted the gene from neural progenitors, and their subsequent progeny. Mating Usp9xloxP/loxP mice with mice expressing Cre recombinase from the Nestin promoter deleted Usp9x throughout the entire brain, and resulted in early postnatal lethality. Although the overall brain architecture was intact, loss of Usp9x disrupted the cellular organization of the ventricular and sub-ventricular zones, and cortical plate. Usp9x absence also led to dramatic reductions in axonal length, in vivo and in vitro, which could in part be explained by a failure in Tgf-β signaling. Deletion of Usp9x from the dorsal telencephalon only, by mating with Emx1-cre mice, was compatible with survival to adulthood but resulted in reduction or loss of the corpus callosum, a dramatic decrease in hippocampal size, and disorganization of the hippocampal CA3 region. This latter phenotypic aspect resembled that observed in Doublecortin knock-out mice, which is an Usp9x interacting protein. This study establishes that Usp9x is critical for several aspects of CNS development, and suggests that its regulation of Tgf-β signaling extends to neurons.  相似文献   

10.
Females homozygous for the Purkinje cell degeneration mutation (pcd) are fertile, although the success rate is much lower than in the wild type. We performed detailed analysis of reproductive abnormalities of pcd females. The number of oocytes produced following exogenous gonadotropin treatment was much lower in pcd 3J-/- females than in pcd 3J+/+ females. Furthermore, the estrous cyclicity of pcd 3J-/- females according to the appearance of the vagina was almost undetectable comparing to that of the wild type. Histological analyses and follicle counting of 4- and 8-week-old pcd 3J-/- ovaries showed an increase in the number of secondary follicles and a decrease in the number of antral follicles, indicating that AGTPBP1/ CCP1 plays an important role in the development of secondary follicles into antral follicles. Consistent with a previous analysis of the pcd cerebellum, pcd 3J-/- ovaries also showed a clear increase in the level of polyglutamylation. Gene expression analysis showed that both oocytes and cumulus cells express CCP1. However, Ccp4 and CCP6, which can compensate the function of CCP1, were not expressed in mouse ovaries. Failure of microtubule deglutamylation did not affect the structure and function of the meiotic spindle in properly aligning chromosomes in the center of the nucleus during meiosis in pcd 3J-/- females. We also showed that the pituitary-derived growth and reproduction-related endocrine system functions normally in pcd 3J-/- mice. The results of this study provide insight into additional functions of CCP1, which cannot be fully explained by the side chain deglutamylation of microtubules alone.  相似文献   

11.
E. J. Eisen  B. H. Johnson 《Genetics》1981,99(3-4):513-524
Correlated responses in male reproductive traits were determined at 4, 6 and 8 weeks of age in lines of mice selected for large litter size (L+), large 6-week body weight (W+), large litter size and small body weight (L+W-) and small litter size and large body weight (L-W+), and in an unselected control (K). Concentration of serum testosterone and weights of testes, seminal vesicles, epididymides and adrenal glands increased with age. Line differences in testosterone concentration were not detected. L+ and W+ males exhibited positive correlated responses in testes, epididymides and seminal vescile weights. Testis weight adjusted for body weight was significantly larger for L+ than controls and approached significance for W+. Realized genetic correlation betestis weight and litter size was 0.60 ± 0.04, and the realized partial genetic correlation holding body weight constant was 0.42. Therefore, pleiotropic loci, acting via the hypothalamic-pituitary axis, affect testis weight and litter size independently of body weight. Additionally, genes influencing overall growth have a pleiotropic effect on testis weight and litter size in mice; the realized genetic correlations of body weight with testis weight and with litter size were 0.60 ± 0.03 and 0.52 ± 0.10. Testis weight increased in both L+W- and L-W+ males. The positive correlated response in L+W- may have resulted from changes in frequency of genes controlling reproductive processes; whereas, in L-W+ it could have been the result of changes in the frequency of genes associated with body weight.  相似文献   

12.
We previously demonstrated that the effects of diethylhexyl phthalate (DEHP) alter reproduction function on male mice. Immature male mice were treated daily with DEHP from postnatal day 7–21, 7–35, 7–49, in a dose-dependent manner. As results, both the quality and quantity of spermatozoa were decreased in 60-day-old mice. The results by RT-PCR analysis indicated that DDx3Y, Usp9Y, RBM, E1F1AY, EGF, FSHR and EGFR genes were down-regulated, and LHR, Cyp17a1 and Cyp19a1 were down-regulated in response to DEHP. These genes were selected based on their markedly increased or decreased expression levels. However, DEHP had no effect on the meiotic process and recombination levels in male mouse germ cells. Treatment with DEHP induced histopathological changes in the testes. Taken together, these results provide a new insight into the molecular mechanisms underlying the detrimental impacts of DEHP in humans and wildlife.  相似文献   

13.
Jun-ichi Suto 《Mammalian genome》2011,22(11-12):648-660
In the present study, dissection of genetic bases of testis weight in mice was performed. Autosomes and the X chromosome were searched using traditional quantitative trait locus (QTL) scans, and the Y chromosome was searched by association studies of Y-consomic strains. QTL analysis was performed in ??DDD?×???CBA F2 mice; the inbred mouse DDD has the heaviest testes, whereas the inbred mouse CBA has the lightest testes. Two significant testis weight QTLs were identified on chromosomes 1 and X. A DDD allele was associated with increased and decreased testis weight at the locus on chromosomes 1 and X, respectively. In the reciprocal cross ??CBA?×???DDD F2 mice, QTL on chromosome 1, and not on chromosome X, had a significant effect on testis weight. The DDD allele at the X-linked locus could not sustain testis weight in combination with the Y chromosome of the CBA strain. The Y chromosome per se had a significant effect on testis weight, i.e., DH-Chr YDDD had significantly heavier testes than DH-Chr YCBA. On the basis of the results of Y-chromosome-wide association studies using 17 Y-consomic strains, variations in Uty, Usp9y, and Sry were significantly associated with testis weight. Thus, testis weight is a complex quantitative phenotype controlled by multiple genes on autosomes and sex chromosomes and their interactions.  相似文献   

14.
We have previously identified Usp46, which encodes for ubiquitin-specific peptidase 46, as a quantitative trait gene affecting the immobility time of mice in the tail suspension test (TST) and forced swimming test. The mutation that we identified was a 3-bp deletion coding for lysine (Lys 92), and mice with this mutation (MT mice), as well as Usp46 KO mice exhibited shorter TST immobility times. Behavioral pharmacology suggests that the gamma aminobutyric acid A (GABAA) receptor is involved in regulating TST immobility time. In order to understand how far Usp46 controls behavioral phenotypes, which could be related to mental disorders in humans, we subjected Usp46 MT and KO mice to multiple behavioral tests, including the open field test, ethanol preference test, ethanol-induced loss of righting reflex test, sucrose preference test, novelty-suppressed feeding test, marble burying test, and novel object recognition test. Although behavioral phenotypes of the Usp46 MT and KO mice were not always identical, deficiency of Usp46 significantly affected performance in all these tests. In the open field test, activity levels were lower in Usp46 KO mice than wild type (WT) or MT mice. Both MT and KO mice showed lower ethanol preference and shorter recovery times after ethanol administration. Compared to WT mice, Usp46 MT and KO mice exhibited decreased sucrose preference, took longer latency periods to bite pellets, and buried more marbles in the sucrose preference test, novelty-suppressed feeding test, and marble burying test, respectively. In the novel object recognition test, neither MT nor KO mice showed an increase in exploration of a new object 24 hours after training. These findings indicate that Usp46 regulates a wide range of behavioral phenotypes that might be related to human mental disorders and provides insight into the function of USP46 deubiquitinating enzyme in the neural system.  相似文献   

15.
Current understanding holds that Klinefelter syndrome (KS) is not inherited, but arises randomly during meiosis. Whether there is any genetic basis for the origin of KS is unknown. Here, guided by our identification of some USP26 variations apparently associated with KS, we found that knockout of Usp26 in male mice resulted in the production of 41, XXY offspring. USP26 protein is localized at the XY body, and the disruption of Usp26 causes incomplete sex chromosome pairing by destabilizing TEX11. The unpaired sex chromosomes then result in XY aneuploid spermatozoa. Consistent with our mouse results, a clinical study shows that some USP26 variations increase the proportion of XY aneuploid spermatozoa in fertile men, and we identified two families with KS offspring wherein the father of the KS patient harbored a USP26‐mutated haplotype, further supporting that paternal USP26 mutation can cause KS offspring production. Thus, some KS should originate from XY spermatozoa, and paternal USP26 mutations increase the risk of producing KS offspring.  相似文献   

16.
We report on juvenile hormone (JH) biosynthesis from long‐chain intermediates by specific reproductive tissues and the corpora allata (CA) prepared from adult longhorned beetles, Apriona germari. The testes, male accessory glands (MAGs), ovaries, and CA contained the long‐chain intermediates in the JH biosynthetic pathway, farnesoic acid (FA), methyl farnesoate (MF), and JH III. The testes and ovaries, but not CA, produced radioactive JH III after the addition of 3H‐methionine and, separately, unlabeled methionine, to the incubation medium. We inferred that endogenous FA is methylated to MF in the testes and ovaries. Addition of farnesol led to increased amounts of FA in the testes, MAGs, ovaries, and CA, indicating oxidation of farnesol to FA. Addition of FA to incubation medium yielded increased JH III, again indicating methylation of FA to MF in the testes, MAGs, ovaries, but not CA. Addition of MF to incubation medium also led to JH III, from which we inferred the epoxidation of MF to JH III. JH biosynthesis from farnesol in the testes, MAGs, and ovaries of A. germari proceeds via oxidation to FA, methylation to MF, and epoxidation to JH III. This is a well‐known pathway to JH III, described here for the first time in reproductive tissues of longhorned beetles. © 2010 Wiley Periodicals, Inc.  相似文献   

17.
Summary A method for superficial pinealectomy of the adult white-footed mouse,Peromyscus leucopus, is presented. Histological examination of the brain of pinealectomized mice showed that the deep pineal gland was left intact. The survival rate of pinealectomized mice was 80%. Pinealectomized mice were exposed to a short day photoperiod (8L:16D) at 15°C for 7 weeks. After this time male mice maintained active gonads with a testicular index (TI, testis width×length/body weight) of 2.0±0.1. Testis weight was 202±35 mg, and the seminiferous tubules contained abundant spermatozoa (spermatogenic index [SI]=4.5±0.2). Sham operated animals had regressed testes. TI was 1.2±0.2, testis weight was 97±26 mg, and the SI was 2.7±0.7 (allP<0.05 relative to pinealectomized mice). Pinealectomized females were reproductively competent in that all of the mice had a perforate vagina, the reproductive tract weight (vagina, uterus, oviducts, and ovaries) was 111±15 mg, and the ovaries from each animal contained preovulatory follicles. Sham operated mice had an imperforate vagina, reproductive tract weights were 34±5 mg, and in only 1 out of 5 mice did the ovaries contain a preovulatory follicle (allP<0.05). The weight of the lipid-free interscapular brown fat was 28% less in pinealectomized mice relative to sham operated animals (P<0.01). These results support the role of the pineal gland as regulator of short day, cold induced reproductive regression and brown fat hypertrophy.  相似文献   

18.
Depilated is a recessive mutation on Chromosome 4 in the position b-1.93±0.51- dep-3.45±0.68.-Pt. It causes severe abnormalities of hair structure. The site of action of dep was investigated by the method of dermal-epidermal recombination. Skins from 14-day mutant and normal mouse embryos were separated into dermal and epidermal components, recombined, and grown in histocompatible mouse testes for 20 days. The recombinations made were +/+ epidermis with +/+ dermis, +/+ epidermis with dep/dep dermis, dep/dep epidermis with +/+ dermis and dep/dep epidermis with dep/dep dermis. Grafts that contained mutant epidermis as one of the components produced hairs that were similar to those found in depilated mice. There was no observable effect of the dermis on hair types produced in this experiment.  相似文献   

19.
《Insect Biochemistry》1986,16(2):387-393
Aspects of testicular fatty acid biochemistry from the Australian field cricket, Teleogryllus commodus, are reported. Over 10% of the phospholipid fatty acids were C20 polyunsaturated fatty acids (PUFAs), with nearly 6% arachidonic acid (20:4). The testes and ovaries accumulated a large proportion of label from radioactive arachidonic acid that was injected into the hemocoel (about 30%). Specificity in the uptake was shown by comparison to a similar study with labelled stearic acid, in which only 1.5% of the radioactivity was taken up by testes. Sixty percent of the radioactivity taken up by testes from [3H]20:4 was incorporated into phospholipids and 30% into triacylglycerols. Fat body of males and females incorporated 27% of the [3H]20:4 into phospholipids and 68% (males) or 55% (females) into triacylglcyerols. Radioactivity from [1-14C]acetate was incorporated into testicular linoleic acid and eicosatrienoic acid, but not eicosatetraenoic acid, suggesting the de novo biosynthesis of both 18:2 and a C20 PUFA by this species. Label from injected [U-14C]linoleic acid was recovered mostly as linoleic acid, with a small portion of the recovered radioactivity in eicosatrienoic acid, but not eicosatetraenoic acid. Very little label from injected linoleic acid occurred as monounsaturated or saturated fatty acids, indicating only slight, if any, β-oxidation of 18:2 to acetate and subsequent lipid synthesis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号