首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A systematic purification scheme is presented for the isolation of six vitamin K-dependent coagulation factors from bovine plasma in a functionally and biochemically pure state. The vitamin K-dependent proteins concentrated by the ordinary barium citrate adsorption were first separated into four fractions, fractions A, B, C, and D, by DEAE-Sephadex A-50 chromatography. From the pooled fraction A, protein S, factor IX, and prothrombin were purified by column chromatography on Blue-Sepharose CL-6B. Heparin-Sepharose chromatography of the pooled fraction B provided mainly pure factor IX, in addition to homogeneous prothrombin. A high degree of resolution of protein C and prothrombin from the pooled fraction C was obtained with a Blue-Sepharose column. This dye-ligand chromatographic procedure was also very effective for the separation of protein Z and factor X contained in the pooled fraction D. Thus, these preparative procedures allowed high recovery of milligram and gram quantities of six vitamin K-dependent proteins from 15 liters of plasma in only two chromatographic steps, except for protein S, which required three (the third step was rechromatography on Blue-Sepharose CL-6B).  相似文献   

2.
A pathway for the synthesis of dimethyl seledine from sodium selenite was studied in rat liver and kidney fractions under anaerobic conditions in the presence of GSH, a NADPH-generating system, and S-adenosylmethionine. Chromatography of liver or kidney soluble fraction on Sephadex G-75 yielded a Fraction C (30 000 molecular weight) which synthesized dimethyl selenide, but at a low rate. Addition of proteins eluting at the void volume (Fraction A) to Fraction C restored full activity. Fractionation of Fraction A on DEAE-cellulose revealed that its ability to stimulate Fraction C was associated with two fractions, one containing glutathione reductase and the other a NADPH-dependent disulfide reductase. It was concluded that Fraction C contains a methyltransferase acting on small amounts of hydrogen selenide produced non-enzymically by the reaction of selenite with GSH, and that stimulation by Fraction A results partly from the NADPH-linked formation of hydrogen selenide catalyzed by glutathione reductase present in Fraction A. Washed liver microsomal fraction incubated with selenite plus 20 mM GSH also synthesized dimethyl selenide, but addition of soluble fraction stimulated activity. A synergistic effect was obtained when liver soluble fraction was added to microsomal fraction in the presence of a physiological level of GSH (2 mM), whereas at 20 mM GSH the effect was merely additive. The microsomal component of the liver system was labile, had maximal activity around pH 7.5, and was exceedingly sensitive to NaAsO2 (93% inhibition by 10?6 M arsenite in the presence of a 20 000-fold excess of GSH). The microsomal activity apparently results from a Se-methyltransferase, possibly a dithiol protein, that methylates hydrogen selenide produced enzymically by the soluble fraction or non-enzymically when a sufficiently high concentration of GSH is used.  相似文献   

3.
An enzyme system which catalyzes the degradation of glycine to one carbon unit, ammonia, and carbon dioxide and the synthesis of glycine from these three substances has been isolated from rat liver mitochondria. The reversible glycine cleavage system is composed of four protein components named as P-, H-, L-, and T-protein, respectively. A procedure is described for the purification of P-protein which catalyzes the decarboxylation of glycine or its reverse reaction in the presence of H-protein, and for T-protein which participates in the formation of one carbon unit and ammonia or the reverse reaction. The procedure described leads to the isolation of a nearly homogeneous form of T-protein but P-protein still is heterogeneous. The molecular weight of T-protein, estimated by molecular sieve chromatography, is 33,000. Properties of the synthesis and cleavage reactions and the exchange of carboxyl group of glycine with bicarbonate are also presented.  相似文献   

4.
The clostridial glycine reductase complex catalyzes the reductive deamination of glycine in an energy-conserving process that results in the esterification of orthophosphate. The complex consists of three protein components: selenoprotein A; protein B, a carbonyl group protein; and protein C, a sulfhydryl protein. The protein C component also catalyzes the arsenate-dependent decomposition of acetyl phosphate. Reaction of protein C with iodoacetate inhibits its ability to decompose acetyl phosphate, but this inactivation of the enzyme by alkylation is prevented in the presence of the substrate indicating the formation of an unreactive enzyme-bound acetylthiol ester. The Se-carboxy-methylselenocysteine residue of the selenoprotein A component of glycine reductase was generated by selective alkylation of the ionized selenol group at pH 6 with [14C]bromoacetate. Using this pure alkylated selenoprotein A as substrate, it was shown that protein C catalyzes the conversion of the [14C]carboxymethyl group, in selenoether linkage to protein A, to [14C]acetate in the presence of arsenate, dithiothreitol, and Mg2+. A procedure using hydrophobic chromatographic matrices was developed for the large scale isolation of protein C, and a number of the properties of the enzyme were determined.  相似文献   

5.
A water-soluble fraction of sialoglycoprotein containing sulfate was isolated from the mucosal scrapings of the rat small intestine without prior treatment with proteolytic enzymes. Chromatography of the water-soluble mucin on a DEAE-cellulose column gave three main fractions: a major carbohydrate-rich fraction containing sulfate (IGP-A), one high in protein content, and a third with a composition similar to the starting material. Fraction IGP-A was resolved into two components by ultracentrifugation and disc-gel electrophoresis. The higher molecular-weight species of IGP-A was separated from the second component by Sepharose-4B chromatography. These two glycoprotein fractions designated IGP-A1 and IGP-A2 had the same chemical composition as IGP-A.  相似文献   

6.
A pathway for the synthesis of dimethyl selenide from sodium selenite was studied in rat liver and kidney fractions under anaerobic conditions in the presence of GSH, a NADPH-generating system, and S-adenosylmethionine. Chromatography of liver or kidney soluble fraction on Sephadex G-75 yielded a Fraction C (30,000 molecular weight) which synthesized dimethyl selenide, but at a low rate. Addition of proteins eluting at the void volume (Fraction A) to Fraction C restored full activity. Fractionation of Fraction A on DEAE-cellulose revealed that its ability to stimulate Fraction C was associated with two fractions, one containing glutathione reductase and the other a NADPH-dependent disulfide reductase. It was concluded that Fraction C contains a methyltransferase acting on small amounts of hydrogen selenide produced non-enzymically by the reaction of selenite with GSH, and that stimulation by Fraction A results partly from the NADPH-linked formation of hydrogen selenide catalyzed by glutathione reductase present in Fraction A. Washed liver microsomal fraction incubated with selenite plus 20 mM GSH also synthesized dimethyl selenide, but addition of soluble fraction stimulated activity. A synergistic effect was obtained when liver soluble fraction was added to microsomal fraction in the presence of a physiological level of GSH (2 mM), whereas at 20 mM GSH the effect was merely additive. The microsomal component of the liver system was labile, had maximal activity around pH 7.5, and was exceedingly sensitive to NaAsO2 (93% inhibition by 10(-6) M arsenite in the presence of a 20,000-fold excess of GSH). The microsomal activity apparently results from a Se-methyltransferase, possibly a dithiol protein, that methylates hydrogen selenide produced enzymically by the soluble fraction or non-enzymically when a sufficiently high concentration of GSH is used.  相似文献   

7.
Cartilage proteoglycan was isolated from bovine nasal septum and fractionated according to buoyant density after dissociative CsCl density gradient centrifugation. Gel-exclusion chromatography showed that hyaluronic acid was present in fractions of density lower than 1.69 g/mL. The molecular weight, assessed by sedimentation equilibrium analysis, of the proteoglycan present in the fractions with density > 1.69 g/mL, which appeared chromatographically homogeneous and constituted 54% of the preparation, ranged from 1.0 to 2.6 × 106 for v = 0.55 cm3 g?1. Carbodiimide-induced modification of the carboxyl groups by methylamine resulted in a reduction of the molecular weight to 0.74 – 1.25 × 106. An analogous reduction in molecular weight was obtained after equilibration of this proteoglycan fraction with hyaluronic acid oligomers containing five disaccharide units. Since both procedures are known to cause inhibition of the interaction between proteoglycans and hyaluronic acid, it is suggested that this lower molecular-weight range represents the true degree of polydispersity of the sub-units of hyaline cartilage proteoglycan constituting this fraction, while the higher values obtained for the intact proteoglycan are the result of the presence of hyaluronic acid in the sample. The molecular-weight range of the whole proteoglycan subunit preparation, assessed after carboxyl group modification, was 0.5–1.2 × 106. Apparently normal and abnormal cartilage was excised from single human osteoarthrosic femoral heads. Proteoglycans extracted by 4M guanidine hydrochloride were isolated after dissociative density gradient centrifugation and subjected to carboxyl group modification. Preparations from normal tissue exhibited molecular-weight averages ranging from 5 to 9 × 105. A molecular-weight reduction was observed with proteoglycans isolated from abnormal areas.  相似文献   

8.
A 26-kDa and a 36-kDa protein that cross-reacted with anti-Ga-common and anti-Gβ antibodies, respectively, were detected in Dunaliella cells. The 26-kDa protein was solubilized from a crude membrane fraction with deoxycholate and purified to homogeneity by DE52 and hydroxylapatite chromatography and DEAE-5PW high performance liquid chromatography (HPLC). The hydroxylapatite-purified preparation had GTPγS binding and GTPase activities, but the homogeneous 26-kDa protein had none. The sequence of the 28 N-terminal amino acids of the 26-kDa protein had no homology to any GTP binding protein thus far reported.  相似文献   

9.
This paper presents a multidimensional profile of the human serum proteome, produced by a two-dimensional protein fractionation system based on liquid chromatography followed by characterization with capillary electrophoresis (CE). The first-dimension separation was done by chromatofocusing over a pH range from 8.5 to 4.0, where proteins were separated by their isoelectric points (pI). In this dimension, fractions were collected based on pH. The first-dimension pI fractions were then resolved in the second dimension by high-resolution, reversed-phase chromatography with a gradient of trifluoroacetic acid (TFA) in acetonitrile and TFA in water. A selected protein fraction collected from the second dimension by time was characterized by CE for molecular-weight estimation and for presence of isoforms. Molecular-weight estimation was done by sodium dodecyl sulfate capillary gel electrophoresis, where proteins were separated in the range of 10,000-225,000 Da. Detection of isoforms was done by capillary isoelectric focusing over a pH range of 3-10. A selected second-dimension fraction that contained the putative serum iron-binding protein transferrin was analyzed by these two CE techniques for molecular-weight determination and the presence of isoforms. The combination of two-dimensional protein fractionation and CE characterization represents an advanced tool for proteomics.  相似文献   

10.
High-resolution phase-sensitive two-dimensional proton nuclear magnetic resonance was used to monitor the preparation by high-performance liquid chromatography of homogeneous proteins from the venom of Naja mossambica mossambica. This resulted in the characterization of a heterogeneous protein preparation VII2, which had been used in earlier structural studies by NMR, as well as a homogeneous protein CTXIIb and a nearly homogeneous protein fraction CTXIIa, which are now both subject to further investigations of their solution conformations.  相似文献   

11.
The site of synthesis of platelet-specific proteins remains to be established. With the use of short-term megakaryocyte-enriched cultures, direct evidence was obtained to show that megakaryocytes synthesize the platelet-specific protein, platelet factor 4. A megakaryocyte-enriched fraction of rabbit bone marrow for culture was obtained by centrifugal elutriation and cultured with [3H]leucine. Newly synthesized 3H-platelet factor 4 was sought by copurification with added carrier rabbit platelet factor 4, using heparin agarose affinity chromatography and immunoprecipitation with specific goat anti- rabbit platelet factor 4 antisera. SDS PAGE of the washed immunoprecipitates demonstrated a [3H]leucine-containing peak which migrated identically with purified homogeneous rabbit platelet factor 4. A second, slightly larger molecular-weight protein was identified in the gels also, suggesting that rabbit platelet factor 4 may be synthesized as a larger molecular-weight precursor in rabbit megakaryocytes. These results provide direct evidence that the platelet- specific protein, platelet factor 4, is synthesized in rabbit megakaryocytes before it is packaged into alpha-granules for release in circulating platelets.  相似文献   

12.
A new simple preparation method for NaK-ATPase-rich membrane fragments   总被引:3,自引:0,他引:3  
A method for the isolation of highly active membrane bound NaK-ATPase without detergents in quantity from the electric organ of the electric eel (Electrophorus electricus) is described. This method consists of the homogenation of electric organ with an isotonic solution containing sucrose, histidine, EDTA, and arginine, and of the separation of the higher active membrane fraction from the microsomal fraction by density gradient centrifugation. The enzyme has a specific activity of about 20 μmol Pi/min/mg at 37°C, and 13 μmol Pi/min/mg at 30°C. Although it is not as pure as the detergent-treated enzyme preparation based on the level of phosphorylated protein, ouabain binding, or sodium dodecyl sulfate-polyacrylamide gel electrophoresis, its enzyme activity is comparable to that of the purified enzymes. This preparation is very stable and is able to change its medium by Sephadex chromatography without any loss of enzyme activity and protein content. This preparation is also expected to keep the original characteristics as well as the enzyme in the tissue.  相似文献   

13.
The isolation and purification of a basic protein from the bottom fraction of Hevea brasiliensis latex is described. Two protein fractions were obtained by chromatography on carboxymethyl cellulose which also differed in their electrophoretic mobility in polyacrylamide gel, but the similarity of their other properties precludes their classification as two protein entities at this stage.  相似文献   

14.
A rapid method of preparing plasma membranes from isolated fat cells is described. After homogenization of the cells, various fractions were isolated by differential centrifugation and linear gradients. Ficoll gradients were preferred because total preparation time was under 3 hr. The density of the plasma membranes was 1.14 in sucrose. The plasma membrane fraction was virtually uncontaminated by nuclei but contained 10% of the mitochondrial succinic dehydrogenase activity and 25–30% of the RNA and reduced nicotinamide adenine dinucleotide cytochrome c reductase activity of the microsomal fraction. Part of the RNA and NADH-cytochrome c reductase activity was believed to be native to the plasma membrane or to the attached endoplasmic reticulum membranes demonstrated by electron microscopy. The adenyl cyclase activity of the plasma membrane fraction was five times that of Rodbell's "ghost" preparation and retained sensitivity to epinephrine. The plasma membrane ATPase activity was five times that of the homogenate and microsomal fractions. Electron microscopic evidence suggested contamination of the plasma membrane fraction by other subcellular components to be less than the biochemical data indicated.  相似文献   

15.
A plasma membrane-enriched fraction (fraction 1B) has been obtained from rat aortic myocytes grown in primary culture. Plasma membrane markers, 5′-nucleotidase and ouabain-sensitive (Na+ + K+)-ATPase, are enriched 4.1- and 8.7-fold, respectively, in this fraction. Although endoplasmic reticulum marker NADPH-cytochrome c reductase is the most enriched in mitochondrial and heavy sucrose density gradient fractions, substantial enrichment of this marker is also observed in membrane fraction 1. This membrane preparation therefore contains a certain quantity of endoplasmic reticulum. Cytochrome c oxidase is de-enriched by a factor of 0.04 in fraction 1, indicating that it is essentially clear of mitochondrial contamination. Homogenization of aortic media-intima layers using a whole-tissue technique induces greater disruption of mitochondria and subsequent contamination of membrane fractions than does the procedure for cell disruption. Analysis of electrophoretic gels, vesicle density distribution and electron micrographs of enriched membrane fractions provide evidence that plasma membrane enriched from cultured myocytes is less traumatized than comparable fractions obtained from intact tissue. The potential value of such a highly enriched, minimally disrupted plasma membrane preparation is discussed.  相似文献   

16.
By detergent-exchange chromatography using a phenyl-Sepharose CL-4B column, Complex III of the respiratory chain of beef heart mitochondria was efficiently resolved into five fractions that were rich in the iron-sulfur protein, ubiquinone-binding protein, core proteins, cytochrome c1, and cytochrome b, respectively. Complex III was initially bound to the phenyl-Sepharose column equilibrated with buffer containing 0.25% deoxycholate and 0.2 M NaCl. An iron-sulfur protein fraction was first eluted from the column with buffer containing 1% deoxycholate and no salt after removal of phospholipids from the complex by washing with the buffer for the column equilibration, as reported previously (Y. Shimomura, M. Nishikimi, and T. Ozawa, 1984, J. Biol. Chem. 259, 14059-14063). Subsequently, a fraction containing the ubiquinone-binding protein and another containing two core proteins were eluted with buffers containing 1.5 and 3 M guanidine, respectively. A fraction containing cytochrome c1 was then eluted with buffer containing 1% dodecyl octaethylene glycol monoether. Finally, a cytochrome b-rich fraction was eluted with buffer containing 2% sodium dodecyl sulfate. The fractions of the iron-sulfur protein and ubiquinone-binding protein were further purified by gel chromatography on a Sephacryl S-200 superfine column, and the cytochrome c1 fraction was further purified by ion-exchange chromatography on a DEAE-Sepharose CL-6B column; each of the three purified proteins was homogeneous as judged by sodium dodecyl sulfate-polyacrylamide gel electrophoresis.  相似文献   

17.
The three Golgi fractions isolated from rat liver homogenates by the procedure given in the companion paper account for 6–7% of the protein of the total microsomal fraction used as starting preparation. The lightest, most homogeneous Golgi fraction (GF1) lacks typical "microsomal" activities, e.g., glucose-6-phosphatase, NADPH-cytochrome c-reductase, and cytochrome P-450. The heaviest, most heterogeneous fraction (GF3) is contaminated by endoplasmic reticulum membranes to the extent of ~15% of its protein. The three fractions taken together account for nearly all the UDP-galactose: N-acetyl-glucosamine galactosyltransferase of the parent microsomal fraction, and for ~70% of the activity of the original homogenate. Omission of the ethanol treatment of the animals reduces the recovery by half. The transferase activity is associated with the membranes of the Golgi elements, not with their content. Galactose is transferred not only to N-acetyl-glucosamine but also to an unidentified lipid-soluble component.  相似文献   

18.
For precise determination of the catalytic activity of 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase (EC 1.1.1.34), the HMG-CoA employed as substrate must be free of HMG, CoA, and other inhibitors of HMG-CoA reductase activity. The standard purification of HMG-CoA by paper chromatography gives poor resolution of HMG-CoA from CoA and may be accompanied by some decomposition of HMG-CoA. We describe a simplified procedure for synthesis and for isolation from the reaction mixture of homogeneous, high specific activity [3(-14)C]HMG-CoA free of HMG, CoA, or nonpolar contaminants. Isolation of HMG-CoA utilizes ion-exchange chromatography in a gradient of ammonium formate, which is subsequently removed by lyophilization. The methods are proposed for use in the preparation or isolation of HMG0CoA.  相似文献   

19.
The plasma membrane ofHalobacterium salinarium, strain 1, has been isolated and characterised. A fraction containing cell envelope vesicles was isolated from a cell homogenate by centrifuging. A crude membrane fraction was obtained from the envelope fraction by dialysing it against distilled water, incubating with nucleases and centrifuging. A nucleotide-free purified membrane fraction, identified with the plasma membrane, was obtained by gel-filtration chromatography of the crude membrane fraction on Agarose. The nucleotide-free membrane-rich fraction contained all the cell lipid, including menaquinone and carotenoid, and cytochrome. No amino sugars could be detected. The action of the detergent, sodium dodecyl sulphate, on the nucleotide-free membrane-rich fraction broke up the membrane into smaller particles. The disaggregation occurred in at least two distinct steps. The disaggregated particles could be reaggregated to a fraction which resembled the original membrane by removing the detergent by dialysis or gel-filtration. A fraction which may be analogous to mitochondrial structural protein was isolated by ammonium sulphate fractionation of a preparation of the nucleotide-free membrane-rich fraction dissolved in a mixture of sodium deoxycholate, sodium cholate and sodium dodecyl sulphate. Protein fractions were separated from the nucleotide-free membrane-rich fraction during gel-filtration chromatography on Agarose in the presence of 6m urea. The authors would like to acknowledge the technical assistance of Miss C. Goode and Mrs. J. Wicks. We are indebted to Mrs. A. Flo of the Department of Biochemistry, The Technical University of Norway, Trondheim, for technical assistance in the preparation of samples for electron microscopy.  相似文献   

20.
A crude chloroplast preparation of primary leaves of Phaseolus vulgaris was allowed to incorporate 14C-leucine into protein. A chloroplast extract was prepared and purified for ribulose 1,5-diphosphate carboxylase by ammonium sulfate precipitation, chromatography on Sephadex G-200, and chromatography on Sepharose 4B. The distribution of radioactive protein and enzyme in fractions eluted from Sepharose 4B was nearly the same. The radioactivity in the product was in peptide linkage, since it was digested to a trichloroacetic acid-soluble product by Pronase. Whole cells in the plastid preparation were not involved in the incorporation of amino acid into the fraction containing ribulose 1,5-diphosphate carboxylase, since incorporation still occurred after removal of cells. The incorporation into the fraction containing ribulose 1,5-diphosphate carboxylase occurs on ribosomes of plastids, since this incorporation is inhibited by chloramphenicol. These plastid preparations may be incorporating amino acid into ribulose 1,5-diphosphate carboxylase, but the results are not conclusive on this point.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号