首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Outer membrane phospholipase A (OMPLA) from Escherichia coli is an integral-membrane enzyme with a unique His-Ser-Asn catalytic triad. In serine proteases and serine esterases usually an Asp occurs in the catalytic triad; its role has been the subject of much debate. Here the role of the uncharged asparagine in the active site of OMPLA is investigated by structural characterization of the Asn156Ala mutant. Asparagine 156 is not involved in maintaining the overall active-site configuration and does not contribute significantly to the thermal stability of OMPLA. The active-site histidine retains an active conformation in the mutant notwithstanding the loss of the hydrogen bond to the asparagine side chain. Instead, stabilization of the correct tautomeric form of the histidine can account for the observed decrease in activity of the Asn156Ala mutant.  相似文献   

2.
Outer membrane phospholipase A (OMPLA) is an integral membrane enzyme that hydrolyses phospholipids requiring Ca(2+) as cofactor. In vitro studies have shown that OMPLA is only active as a dimer. The structures of monomeric and dimeric OMPLA provided possible clues to the activation process. In the inhibited dimeric species calcium ions are located at the dimer interface ideally suited to stabilise the oxyanion intermediates formed during catalysis. The side chain hydroxyl function of Ser152 is one of the ligands of this interfacial calcium. In the crystal structure of monomeric OMPLA the interfacial calcium site is lacking, but calcium was found to bind at a site involving the carboxylates of Asp149 and Asp184. In the current study the relevance of the identified calcium sites has been studied by site-directed mutagenesis. The Ser152Asn variant confirmed the importance of the interfacial calcium site for catalysis, and also demonstrated that this site is essentially involved in the dimerisation process. Replacements of the ligands in monomeric OMPLA, i.e. Asp149Asn, Asp149Ala and Asp184Asn, only showed minor effects on catalytic activity and dimerisation. A stronger effect observed for the variant Asp184Ala was explained by the proximity of Asp184 to the catalytically important Ser152 residue. We propose that Asp149 and Asp184 provide an electronegative funnel that may facilitate Ca(2+) transfer to the interfacial calcium site.  相似文献   

3.
Outer membrane phospholipase A (OMPLA) is an integral membrane enzyme that hydrolyses phospholipids requiring Ca2+ as cofactor. In vitro studies have shown that OMPLA is only active as a dimer. The structures of monomeric and dimeric OMPLA provided possible clues to the activation process. In the inhibited dimeric species calcium ions are located at the dimer interface ideally suited to stabilise the oxyanion intermediates formed during catalysis. The side chain hydroxyl function of Ser152 is one of the ligands of this interfacial calcium. In the crystal structure of monomeric OMPLA the interfacial calcium site is lacking, but calcium was found to bind at a site involving the carboxylates of Asp149 and Asp184. In the current study the relevance of the identified calcium sites has been studied by site-directed mutagenesis. The Ser152Asn variant confirmed the importance of the interfacial calcium site for catalysis, and also demonstrated that this site is essentially involved in the dimerisation process. Replacements of the ligands in monomeric OMPLA, i.e. Asp149Asn, Asp149Ala and Asp184Asn, only showed minor effects on catalytic activity and dimerisation. A stronger effect observed for the variant Asp184Ala was explained by the proximity of Asp184 to the catalytically important Ser152 residue. We propose that Asp149 and Asp184 provide an electronegative funnel that may facilitate Ca2+ transfer to the interfacial calcium site.  相似文献   

4.
Outer-membrane phospholipase A (OMPLA) is one of the few enzymes present in the outer membrane of Gram-negative bacteria. The enzymatic activity of OMPLA is strictly regulated to prevent uncontrolled breakdown of the surrounding phospholipids. The activity of OMPLA can be induced by membrane perturbation and concurs with dimerization of the enzyme. The recently elucidated crystal structures of the inactive, monomeric and an inhibited dimeric form of the enzyme provide detailed structural insight into the functional properties of the enzyme. OMPLA is a serine hydrolase with a unique Asn-156-His-142-Ser-144 catalytic triad. Only in the dimeric state, complete substrate binding pockets and functional oxyanion holes are formed. A model is proposed for the activation of OMPLA in which membrane perturbation causes the formation of non-bilayer structures, resulting in the presentation of phospholipids to the active site of OMPLA and leading to the formation of the active dimeric species. Possible roles for OMPLA in maintaining the cell envelope integrity and in pathogenicity are discussed.  相似文献   

5.
Petrovan RJ  Ruf W 《Biochemistry》2002,41(30):9302-9309
Factor VIIa (VIIa) remains in a zymogen-like state following proteolytic activation and depends on interactions with the cofactor tissue factor (TF) for function. Val(21), Glu(154), and Met(156) are residues that are spatially close in available zymogen and enzyme structures, despite major conformational differences in the corresponding loop segments. This residue triad displays unusual side chain properties in comparison to the properties of other coagulation serine proteases. By mutagenesis, we demonstrate that these residues cooperate to stabilize the enzyme conformation and to enhance the affinity for TF. In zymogen VII, however, substitution of the triad did not change the cofactor affinity, further emphasizing the crucial role of the activation pocket in specifically stabilizing the active enzyme conformation. In comparison to VIIa(Q156), the triple mutant VIIa(N21I154Q156) had a stabilized amino-terminal Ile(16)-Asp(194) salt bridge and enhanced catalytic function. However, proteolytic and amidolytic activities of free VIIa variants were not concordantly increased. Rather, a negatively charged Asp at position 21 was the critical factor that determined whether an amidolytically more active VIIa variant also more efficiently activated the macromolecular substrate. These data thus demonstrate an unexpected complexity by which the zymogenicity-determining triad in the activation pocket of VIIa controls the active enzyme conformation and contributes to exosite interactions with the macromolecular substrate.  相似文献   

6.
Chlorophyllases (Chlases), cloned so far, contain a lipase motif with the active serine residue of the catalytic triad of triglyceride lipases. Inhibitors specific for the catalytic serine residue in serine hydrolases, which include lipases effectively inhibited the activity of the recombinant Chenopodium album Chlase (CaCLH). From this evidence we assumed that the catalytic mechanism of hydrolysis by Chlase might be similar to those of serine hydrolases that have a catalytic triad composed of serine, histidine and aspartic acid in their active site. Thus, we introduced mutations into the putative catalytic residue (Ser162) and conserved amino acid residues (histidine, aspartic acid and cysteine) to generate recombinant CaCLH mutants. The three amino acid residues (Ser162, Asp191 and His262) essential for Chlase activity were identified. These results indicate that Chlase is a serine hydrolase and, by analogy with a plausible catalytic mechanism of serine hydrolases, we proposed a mechanism for hydrolysis catalyzed by Chlase.  相似文献   

7.
F Faustinella  L C Smith  L Chan 《Biochemistry》1992,31(32):7219-7223
Lipoprotein lipase (LPL), hepatic lipase, and pancreatic lipase show high sequence homology to one another. The crystal structure of pancreatic lipase suggests that it contains a trypsin-like Asp-His-Ser catalytic triad at the active center, which is shielded by a disulfide bridge-bounded surface loop that must be repositioned before the substrate can gain access to the catalytic residues. By sequence alignment, the homologous catalytic triad in LPL corresponds to Asp156-His241-Ser132, absolutely conserved residues, and the homologous surface loop to residues 217-238, a poorly conserved region. To verify these assignments, we expressed in vitro wild-type LPL and mutant LPLs having single amino acid mutations involving residue Asp156 (to His, Ser, Asn, Ala, Glu, or Gly), His241 (to Asn, Ala, Arg, Gln, or Trp), or Ser132 (to Gly, Ala, Thu, or Asp) individually. All 15 mutant LPLs were totally devoid of enzyme activity, while wild-type LPL and other mutant LPLs containing substitutions in other positions were fully active. We further replaced the 22-residue LPL loop which shields the catalytic center either partially (replacing 6 of 22 residues) or completely with the corresponding hepatic lipase loop. The partial loop-replacement chimeric LPL was found to be fully active, and the complete loop-replacement mutant had approximately 60% activity, although the primary sequence of the hepatic lipase loop is quite different. In contrast, replacement with the pancreatic lipase loop completely inactivated the enzyme. Our results are consistent with Asp156-His241-Ser132 being the catalytic triad in lipoprotein lipase.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
The serine and cysteine proteinases represent two important classes of enzymes that use a catalytic triad to hydrolyze peptides and esters. The active site of the serine proteinases consists of three key residues, Asp...His...Ser. The hydroxyl group of serine functions as a nucleophile and the imidazole ring of histidine functions as a general acid/general base during catalysis. Similarly, the active site of the cysteine proteinases also involves three key residues: Asn, His, and Cys. The active site of the cysteine proteinases is generally believed to exist as a zwitterion (Asn...His+...Cys-) with the thiolate anion of the cysteine functioning as a nucleophile during the initial stages of catalysis. Curiously, the mutant serine proteinases, thiol subtilisin and thiol trypsin, which have the hybrid Asp...His...Cys triad, are almost catalytically inert. In this study, ab initio Hartree-Fock calculations have been performed on the active sites of papain and the mutant serine proteinase S195C rat trypsin. These calculations predict that the active site of papain exists predominately as a zwitterion (Cys-...His+...Asn). However, similar calculations on S195C rat trypsin demonstrate that the thiol mutant is unable to form a reactive thiolate anion prior to catalysis. Furthermore, structural comparisons between native papain and S195C rat trypsin have demonstrated that the spatial juxtapositions of the triad residues have been inverted in the serine and cysteine proteinases and, on this basis, I argue that it is impossible to convert a serine proteinase to a cysteine proteinase by site-directed mutagenesis.  相似文献   

9.
Schöttler S  Wende W  Pingoud V  Pingoud A 《Biochemistry》2000,39(51):15895-15900
The monomeric homing endonuclease PI-SceI harbors two catalytic centers which cooperate in the cleavage of the two strands of its extended recognition sequence. Structural and biochemical data suggest that catalytic center I contains Asp218, Asp229, and Lys403, while catalytic center II contains Asp326, Thr341, and Lys301. The analogy with I-CreI, for which the cocrystal structure with the DNA substrate has been determined, suggests that Asp218 and Asp229 in catalytic center I and Asp326 and Thr341 in catalytic center II serve as ligands for Mg(2+), the essential divalent metal ion cofactor which can be replaced by Mn(2+) in vitro. We have carried out a mutational analysis of these presumptive Mg(2+) ligands. The variants carrying an alanine or asparagine substitution bind DNA, but (with the exception of the D229N variant) are inactive in DNA cleavage in the presence of Mg(2+), demonstrating that these residues are important for cleavage. Our finding that the PI-SceI variants carrying single cysteine substitutions at these positions are inactive in the presence of the oxophilic Mg(2+) but active in the presence of the thiophilic Mn(2+) suggests that the amino acid residues at these positions are involved in cofactor binding. From the fact that in the presence of Mn(2+) the D218C and D326C variants are even more active than the wild-type enzyme, it is concluded that Asp218 and Asp326 are the principal Mg(2+) ligands of PI-SceI. On the basis of these findings and the available structural information, a model for the composition of the two Mg(2+) binding sites of PI-SceI is proposed.  相似文献   

10.
We are studying naturally occurring mutations in the gene for lipoprotein lipase (LPL) to advance our knowledge about the structure/function relationships for this enzyme. We and others have previously described 11 mutations in human LPL gene and until now none of these directly involves any of the residues in the proposed Asp156-His241-Ser132 catalytic triad. Here we report two separate probands who are deficient in LPL activity and have three different LPL gene haplotypes, suggesting three distinct mutations. Using polymerase chain reaction cloning and DNA sequencing we have identified that proband 1 is a compound heterozygote for a G----A transition at nucleotide 721, resulting in a substitution of asparagine for aspartic acid at residue 156, and a T----A transversion, resulting in a substitution of serine for cysteine at residues 216. Proband 2 is homozygous for an A----G base change at nucleotide 722, leading to a substitution of glycine for aspartic acid at residue 156. The presence of these mutations in the patients and available family members was confirmed by restriction analysis of polymerase chain reaction-amplified DNA. In vitro site-directed mutagenesis and subsequent expression in COS cells have confirmed that all three mutations result in catalytically defective LPL. The two naturally occurring mutations, which both alter the same aspartic acid residue in the proposed Asp156-His241-Ser132 catalytic triad of human LPL, indicate that Asp156 plays a significant role in LPL catalysis. The Cys216----Ser mutation destroys a conserved disulfide bridge that is apparently critical for maintaining LPL structure and function.  相似文献   

11.
The recently discovered extracellular poly[(R)-3-hydroxybutyrate] (PHB) depolymerase PhaZ7 of Paucimonas lemoignei represents the first member of a new subgroup (EC 3.1.1.75) of serine hydrolases with no significant amino acid similarities to conventional PHB depolymerases, lipases or other hydrolases except for a potential lipase box-like motif (Ala-His-Ser136-Met-Gly) and potential candidates for catalytic triad and oxyanion pocket amino acids. In order to identify amino acids essential for activity 11 mutants of phaZ7 were generated by site-directed mutagenesis and expressed in recombinant protease-deficient Bacillus subtilis WB800. The wild-type depolymerase and 10 of the 11 mutant proteins (except for Ser136Cys) were expressed and efficiently secreted by B. subtilis as shown by Western blots of cell-free culture fluid proteins. No PHB depolymerase activity was detected in strains harbouring one of the following substitutions: His47Ala, Ser136Ala, Asp242Ala, Asp242Asn, His306Ala, indicating the importance of these amino acids for activity. Replacement of Ser136 by Thr resulted in a decrease of activity to about 20% of the wild-type level and suggested that the hydroxy group of the serine side chain is important for activity but can be partially replaced by the hydroxy function of threonine. Alterations of Asp256 to Ala or Asn or of the putative serine hydrolase pentapeptide motif (Ala-His-Ser136-Met-Gly) to a lipase box consensus sequence (Gly134-His-Ser136-Met-Gly) or to the PHB depolymerase box consensus sequence (Gly134-Leu135-Ser136-Met-Gly) had no significant effect on PHB depolymerase activity, indicating that these amino acids or sequence motifs were not essential for activity. In conclusion, the PHB depolymerase PhaZ7 is a serine hydrolase with a catalytic triad and oxyanion pocket consisting of His47, Ser136, Asp242 and His306.  相似文献   

12.
The revised amino acid sequence of rat submaxillary gland tonin, a serine protease, does contain the active site Asp residue. The active site of this kallikrein-related enzyme is thus made up of the same catalytic triad (Asp, Ser, and His) found in all known serine proteases. The important Asp residue has now been localized in a 16 amino acid peptide previously reported as missing in the tonin sequence. The complete amino acid sequence thus contains 235 residues corresponding to a molecular weight of 25,658, more in agreement with previously reported molecular weights. Moreover, the revised structure led (a) to the assignment of Arg, Asn, and Val residues instead of His, Asp, and Gly at positions 63, 165, and 169, respectively; (b) to the assignment of residues occupying an overlapping sequence at positions 165-171, and finally (c) to the localization of two N-glycosylation sites at positions 82 and 165. These results further document the close relationship of tonin to the ever expanding kallikrein family.  相似文献   

13.
The Escherichia coli genes frmB (yaiM) and yeiG encode two uncharacterized proteins that share 54% sequence identity and contain a serine esterase motif. We demonstrated that purified FrmB and YeiG have high carboxylesterase activity against the model substrates, p-nitrophenyl esters of fatty acids (C2-C6) and alpha-naphthyl acetate. However, both proteins had the highest hydrolytic activity toward S-formylglutathione, an intermediate of the glutathione-dependent pathway of formaldehyde detoxification. With this substrate, both proteins had similar affinity (Km = 0.41-0.43 mM), but FrmB was almost 5 times more active. Alanine replacement mutagenesis of YeiG demonstrated that Ser145, Asp233, and His256 are absolutely required for activity, indicating that these residues represent a serine hydrolase catalytic triad in this protein and in other S-formylglutathione hydrolases. This was confirmed by inspecting the crystal structure of the Saccharomyces cerevisiae S-formylglutathione hydrolase YJG8 (Protein Data Bank code 1pv1), which has 45% sequence identity to YeiG. The structure revealed a canonical alpha/beta-hydrolase fold and a classical serine hydrolase catalytic triad (Ser161, His276, Asp241). In E. coli cells, the expression of frmB was stimulated 45-75 times by the addition of formaldehyde to the growth medium, whereas YeiG was found to be a constitutive enzyme. The simultaneous deletion of both frmB and yeiG genes was required to increase the sensitivity of the growth of E. coli cells to formaldehyde, suggesting that both FrmB and YeiG contribute to the detoxification of formaldehyde. Thus, FrmB and YeiG are S-formylglutathione hydrolases with a Ser-His-Asp catalytic triad involved in the detoxification of formaldehyde in E. coli.  相似文献   

14.
Introduction of a cysteine protease active site into trypsin   总被引:12,自引:0,他引:12  
J N Higaki  L B Evnin  C S Craik 《Biochemistry》1989,28(24):9256-9263
Active site serine 195 of rat anionic trypsin was replaced with a cysteine by site-specific mutagenesis in order to determine if a thiol group could function as the catalytic nucleophile in serine protease active site environment. Two genetically modified rat thiol trypsins were generated; the first variant contained a single substitution of Ser195 with Cys (trypsin S195C) while the second variant contained the Ser195 to Cys as well as an Asp102 to Asn substitution (trypsin D102N,S195C) that more fully mimics the putative catalytic triad of papain. Both variants were expressed as his J signal peptide-trypsin fusion proteins to high levels under the control of the tac promoter. The mature forms of both variants were secreted into the periplasmic space of Escherichia coli. Trypsin S195C shows a low level of activity toward the activated ester substrate Z-Lys-pNP, while both trypsin S195C and trypsin D102N,S195C were active toward the fluorogenic tripeptide substrate Z-GPR-AMC. Esterase and peptidase activities of both thiol trypsin variants were inhibited by known Cys protease inhibitors as well as by specific trypsin inhibitors. The kcat of trypsin S195C was reduced by a factor of 6.4 x 10(5) relative to that of trypsin while the kcat of trypsin D102N,S195C was lowered by a factor of 3.4 x 10(7) with Z-GPR-AMC as substrate. Km values were unaffected. The loss of activity of trypsin D102N,S195C was partially attributed to an inappropriate Asn102-His57 interaction that precludes the formation of the catalytically competent His57-Cys195 ion pair although loss of the negative charge of D102 at the active site probably contributes to diminished activity.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
16.
In the active centre of pancreatic phospholipase A2 His48 is at hydrogen-bonding distance to Asp99. This Asp-His couple is assumed to act together with a water molecule as a catalytic triad. Asp99 is also linked via an extended hydrogen bonding system to the side chains of Tyr52 and Tyr73. To probe the function of the fully conserved Asp99, Tyr52 and Tyr73 residues in phospholipase A2, the Asp99 residue was replaced by Asn, and each of the two tyrosines was separately replaced by either a Phe or a Gln. The catalytic and binding properties of the Phe52 and Phe73 mutants did not change significantly relative to the wild-type enzyme. This rules out the possibility that either one of the two Tyr residues in the wild-type enzyme can function as an acyl acceptor or proton donor in catalysis. The Gln73 mutant could not be obtained in any significant amounts probably due to incorrect folding. The Gln52 mutant was isolated in low yield. This mutant showed a large decrease in catalytic activity while its substrate binding was nearly unchanged. The results suggest a structural role rather than a catalytic function of Tyr52 and Tyr73. Substitution of asparagine for aspartate hardly affects the binding constants for both monomeric and micellar substrate analogues. Kinetic characterization revealed that the Asn99 mutant has retained no less than 65% of its enzymatic activity on the monomeric substrate rac 1,2-dihexanoyldithio-propyl-3-phosphocholine, probably due to the fact that during hydrolysis of monomeric substrate by phospholipase A2 proton transfer is not the rate-limiting step.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Alpha-methylacyl-CoA racemase (Amacr) catalyzes the racemization of alpha-methyl-branched CoA esters. Sequence comparisons have shown that this enzyme is a member of the family III CoA transferases. The mammalian Amacr is involved in bile acid synthesis and branched-chain fatty acid degradation. In human, mutated variants of Amacr have been shown to be associated with disease states. Amino acid sequence alignment of Amacrs and its homologues from various species revealed 26 conserved protic residues, assumed to be potential candidates as catalytic residues. Amacr from Mycobacterium tuberculosis (MCR) was taken as a representative of the racemases. To determine their importance for efficient catalysis, each of these 26 protic residues of MCR was mutated into an alanine, respectively, and the mutated variants were overexpressed in Escherichia coli. It was found that four variants (R91A, H126A, D156A, and E241A) were properly folded but had much decreased catalytic efficiency. Apparently, Arg91, His126, Asp156, and Glu241 are important catalytic residues of MCR. The importance of these residues for catalysis can be rationalized by the 1.8 A resolution crystal structure of MCR, which shows that the catalytic site is at the interface between the large and small domain of two different subunits of the dimeric enzyme. This crystal structure is the first structure of a complete enzyme of the bile acid synthesis pathway. It shows that MCR has unique structural features, not seen in the structures of the sequence related formyl-CoA transferases, suggesting that the family III CoA transferases can be subdivided in at least two classes, being racemases and CoA transferases.  相似文献   

18.
We are probing the determinants of catalytic function and substrate specificity in serine proteases by kinetic and crystallographic characterization of genetically engineered site-directed mutants of rat trypsin. The role of the aspartyl residue at position 102, common to all members of the serine protease family, has been tested by substitution with asparagine. In the native enzyme, Asp102 accepts a hydrogen bond from the catalytic base His57, which facilitates the transfer of a proton from the enzyme nucleophile Ser195 to the substrate leaving group. At neutral pH, the mutant is four orders of magnitude less active than the naturally occurring enzyme, but its binding affinity for model substrates is virtually undiminished. Crystallographic analysis reveals that Asn102 donates a hydrogen bond to His57, forcing it to act as donor to Ser195. Below pH 6, His57 becomes statistically disordered. Presumably, the di-protonated population of histidyl side chains are unable to hydrogen bond to Asn102. Steric conflict may cause His57 to rotate away from the catalytic site. These results suggest that Asp102 not only provides inductive and orientation effects, but also stabilizes the productive tautomer of His57. Three experiments were carried out to alter the substrate specificity of trypsin. Glycine residues at positions 216 and 226 in the substrate-binding cavity were replaced by alanine residues in order to differentially affect lysine and arginine substrate binding. While the rate of catalysis by the mutant enzymes was reduced in the mutant enzymes, their substrate specificity was enhanced relative to trypsin. The increased specificity was caused by differential effects on the catalytic activity towards arginine and lysine substrates. The Gly----Ala substitution at 226 resulted in an altered conformation of the enzyme which is converted to an active trypsin-like conformation upon binding of a substrate analog. In a third experiment, Lys189, at the bottom of the specificity pocket, was replaced with an aspartate with the expectation that specificity of the enzyme might shift to aspartate. The mutant enzyme is not capable of cleaving at Arg and Lys or Asp, but shows an enhanced chymotrypsin-like specificity. Structural investigations of these mutants are in progress.  相似文献   

19.
The protein SpoIVB plays a key role in signaling in the final sigma(K) checkpoint of Bacillus subtilis. This regulatory mechanism coordinates late gene expression during development in this organism and we have recently shown SpoIVB to be a serine peptidase. SpoIVB signals by transiting a membrane, undergoing self-cleavage, and then by an unknown mechanism activating a zinc metalloprotease, SpoIVFB, which cleaves pro-final sigma(K) to its active form, final sigma(K), in the outer mother cell chamber of the developing cell. In this work we have characterized the serine peptidase domain of SpoIVB. Alignment of SpoIVB with homologues from other spore formers has allowed site-specific mutagenesis of all potential active site residues within the peptidase domain. We have defined the putative catalytic domain of the SpoIVB serine peptidase as a 160-amino-acid residue segment at the carboxyl terminus of the protein. His236 and Ser378 are the most important residues for proteolysis, with Asp363 being the most probable third member of the catalytic triad. In addition, we have shown that mutations at residues Asn290 and His394 lead to delayed signaling in the final sigma(K) checkpoint. The active site residues suggest that SpoIVB and its homologues from other spore formers are members of a new family of serine peptidases of the trypsin superfamily.  相似文献   

20.
Models for the binding of the sarcin-ricin loop (SRL) of 28S ribosomal RNA to ricin A chain (RTA) suggest that several surface exposed arginine residues surrounding the active site cleft make important interactions with the RNA substrate. The data presented in this study suggest differing roles for these arginyl residues. Substitution of Arg48 or Arg213 with Ala lowered the activity of RTA 10-fold. Furthermore, substitution of Arg213 with Asp lowered the activity of RTA 100-fold. The crystal structure of this RTA variant showed it to have an unaltered tertiary structure, suggesting that the positively charged state of Arg213 is crucial for activity. Substitution of Arg258 with Ala had no effect on activity, although substitution with Asp lowered activity 10-fold. Substitution of Arg134 prevented expression of folded protein, suggesting a structural role for this residue. Several models have been proposed for the binding of the SRL to the active site of RTA in which the principal difference lies in the conformation of the second 'G' in the target GAGA motif in the 28S rRNA substrate. In one model, the sidechain of Asn122 is proposed to make interactions with this G, whereas another model proposes interactions with Asp75 and Asn78. Site-directed mutagenesis of these residues of RTA favours the first of these models, as substitution of Asn78 with Ser yielded an RTA variant whose activity was essentially wild-type, whereas substitution of Asn122 reduced activity 37.5-fold. Substitution of Asp75 failed to yield significant folded protein, suggesting a structural role for this residue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号