首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Cdc4/34/53 pathway targets Cdc6p for proteolysis in budding yeast.   总被引:31,自引:6,他引:25       下载免费PDF全文
L S Drury  G Perkins    J F Diffley 《The EMBO journal》1997,16(19):5966-5976
The budding yeast Cdc6 protein (Cdc6p) is essential for formation of pre-replicative complexes (pre-RCs) at origins of DNA replication. Regulation of pre-RC assembly plays a key role in making initiation of DNA synthesis dependent upon passage through mitosis and in limiting DNA replication to once per cell cycle. Cdc6p is normally only present at high levels during the G1 phase of the cell cycle. This is partly because the CDC6 gene is only transcribed during G1. In this article we show that rapid degradation of Cdc6p also contributes to this periodicity. Cdc6p degradation rates are regulated during the cell cycle, reaching a peak during late G1/early S phase. Removal of a 47-amino-acid domain near the N-terminus of Cdc6p prevents degradation of Cdc6p. Likewise, mutations in the Cdc4/34/53 pathway involved in ubiquitin-mediated degradation block proteolysis and genetic evidence is presented indicating that the N-terminus of Cdc6p interacts with the Cdc4/34/53 pathway, probably through Cdc4p. A stable Cdc6p mutant which is no longer degraded by the Cdc4/34/53 pathway is, none the less, fully functional. Constitutive overexpression of either wild-type or stable Cdc6p does not induce re-replication and does not induce assembly of pre-replicative complexes after DNA replication is complete.  相似文献   

2.
The CDC45 gene of Saccharomyces cerevisiae was isolated by complementation of the cold-sensitive cdc45-1 mutant and shown to be essential for cell viability. Although CDC45 genetically interacts with a group of MCM genes (CDC46, CDC47, and CDC54), the predicted sequence of its protein product reveals no significant sequence similarity to any known Mcm family member. Further genetic characterization of the cdc45-1 mutant demonstrated that it is synthetically lethal with orc2-1, mcm2-1, and mcm3-1. These results not only reveal a functional connection between the origin recognition complex (ORC) and Cdc45p but also extend the CDC45-MCM genetic interaction to all known MCM family members that were shown to be involved in replication initiation. Initiation of DNA replication in cdc45-1 cells was defective, causing a delayed entry into S phase at the nonpermissive temperature, as well as a high plasmid loss rate which could be suppressed by tandem copies of replication origins. Furthermore, two-dimensional gels directly showed that chromosomal origins fired less frequently in cdc45-1 cells at the nonpermissive temperature. These findings suggest that Cdc45p, ORC, and Mcm proteins act in concert for replication initiation throughout the genome.  相似文献   

3.
《Gene》1997,187(2):239-246
CDC45 is an essential gene required for initiation of DNA replication in the budding yeast Saccharomyces cerevisiae. CDC45 interacts genetically with CDC46 and CDC47, both members of the MCM family of genes which have been implicated in the licensing of DNA replication. In this report, the isolation of CDC45 is described. The complementing gene is linked to an essential open reading frame on chromosome XII. CDC45 was found to be cell cycle regulated and steady-state mRNA levels are G1/S-specific. CDC45 encodes a protein structurally related to Tsd2p, a protein required for DNA replication in Ustilago maydis. CDC45 also interacts genetically with ORC2, the gene encoding the second subunit of the origin recognition complex, ORC, and MCM3, another member of the MCM family. The cdc45-1 mutant has a plasmid maintenance defect which is rescued by the addition of multiple potential origins to the plasmid.  相似文献   

4.
Cdc7 kinase, conserved from yeasts to human, plays important roles in DNA replication. However, the mechanisms by which it stimulates initiation of DNA replication remain largely unclear. We have analyzed phosphorylation of MCM subunits during cell cycle by examining mobility shift on SDS-PAGE. MCM4 on the chromatin undergoes specific phosphorylation during S phase. Cdc7 phosphorylates MCM4 in the MCM complexes as well as the MCM4 N-terminal polypeptide. Experiments with phospho-amino acid-specific antibodies indicate that the S phase-specific mobility shift is due to the phosphorylation at specific N-terminal (S/T)(S/T)P residues of the MCM4 protein. These specific phosphorylation events are not observed in mouse ES cells deficient in Cdc7 or are reduced in the cells treated with siRNA specific to Cdc7, suggesting that they are mediated by Cdc7 kinase. The N-terminal phosphorylation of MCM4 stimulates association of Cdc45 with the chromatin, suggesting that it may be an important phosphorylation event by Cdc7 for activation of replication origins. Deletion of the N-terminal non-conserved 150 amino acids of MCM4 results in growth inhibition, and addition of amino acids carrying putative Cdc7 target sequences partially restores the growth. Furthermore, combination of MCM4 N-terminal deletion with alanine substitution and deletion of the N-terminal segments of MCM2 and MCM6, respectively, which contain clusters of serine/threonine and are also likely targets of Cdc7, led to an apparent nonviable phenotype. These results are consistent with the notion that the N-terminal phosphorylation of MCM2, MCM4, and MCM6 may play functionally redundant but essential roles in initiation of DNA replication.  相似文献   

5.
Cdc6 encodes a key protein for DNA replication, responsible for the recruitment of the MCM helicase to replication origins during the G1 phase of the cell division cycle. The oncogenic potential of deregulated Cdc6 expression has been inferred from cellular studies, but no mouse models have been described to study its effects in mammalian tissues. Here we report the generation of K5-Cdc6, a transgenic mouse strain in which Cdc6 expression is deregulated in tissues with stratified epithelia. Higher levels of CDC6 protein enhanced the loading of MCM complexes to DNA in epidermal keratinocytes, without affecting their proliferation rate or inducing DNA damage. While Cdc6 overexpression did not promote skin tumors, it facilitated the formation of papillomas in cooperation with mutagenic agents such as DMBA. In addition, the elevated levels of CDC6 protein in the skin extended the resting stage of the hair growth cycle, leading to better fur preservation in older mice.  相似文献   

6.
Cell division cycle protein 45 (Cdc45) plays a critical role in DNA replication to ensure that chromosomal DNA is replicated only once per cell cycle. We analysed the expression of human Cdc45 in proliferating and nonproliferating cells. Our findings show that Cdc45 protein is absent from long-term quiescent, terminally differentiated and senescent human cells, although it is present throughout the cell cycle of proliferating cells. Moreover, Cdc45 is much less abundant than the minichromosome maintenance (Mcm) proteins in human cells, supporting the concept that origin binding of Cdc45 is rate limiting for replication initiation. We also show that the Cdc45 protein level is consistently higher in human cancer-derived cells compared with primary human cells. Consequently, tumour tissue is preferentially stained using Cdc45-specific antibodies. Thus, Cdc45 expression is tightly associated with proliferating cell populations and Cdc45 seems to be a promising candidate for a novel proliferation marker in cancer cell biology.  相似文献   

7.
The members of the MCM protein family are essential eukaryotic DNA replication factors that form a six-member protein complex. In this study, we use antibodies to four MCM proteins to investigate the structure of and requirements for the formation of fission yeast MCM complexes in vivo, with particular regard to Cdc19p (MCM2). Gel filtration analysis shows that the MCM protein complexes are unstable and can be broken down to subcomplexes. Using coimmunoprecipitation, we find that Mis5p (MCM6) and Cdc21p (MCM4) are tightly associated with one another in a core complex with which Cdc19p loosely associates. Assembly of Cdc19p with the core depends upon Cdc21p. Interestingly, there is no obvious change in Cdc19p-containing MCM complexes through the cell cycle. Using a panel of Cdc19p mutants, we find that multiple domains of Cdc19p are required for MCM binding. These studies indicate that MCM complexes in fission yeast have distinct substructures, which may be relevant for function.  相似文献   

8.
In eukaryotic cells, an ordered sequence of events leads to the initiation of DNA replication. During the G(1) phase of the cell cycle, a prereplication complex (pre-RC) consisting of ORC, Cdc6, Cdt1, and MCM2-7 is established at replication origins on the chromatin. At the G(1)/S transition, MCM10 and the protein kinases Cdc7-Dbf4 and Cdk2-cyclin E cooperate to recruit Cdc45 to the pre-RC, followed by origin unwinding, RPA binding, and recruitment of DNA polymerases. Using the soluble DNA replication system derived from Xenopus eggs, we demonstrate that immunodepletion of protein phosphatase 2A (PP2A) from egg extracts and inhibition of PP2A activity by okadaic acid abolish loading of Cdc45 to the pre-RC. Consistent with a defect in Cdc45 loading, origin unwinding and the loading of RPA and DNA polymerase alpha are also inhibited. Inhibition of PP2A has no effect on MCM10 loading and on Cdc7-Dbf4 or Cdk2 activity. The substrate of PP2A is neither a component of the pre-RC nor Cdc45. Instead, our data suggest that PP2A functions by dephosphorylating and activating a soluble factor that is required to recruit Cdc45 to the pre-RC. Furthermore, PP2A appears to counteract an unknown inhibitory kinase that phosphorylates and inactivates the same factor. Thus, the initiation of eukaryotic DNA replication is regulated at the level of Cdc45 loading by a combination of stimulatory and inhibitory phosphorylation events.  相似文献   

9.
Cdc6p is an essential component of the pre-replicative complex (pre-RC), which binds to DNA replication origins to promote initiation of DNA replication. Only once per cell cycle does DNA replication take place. After initiation, the pre-RC components are disassembled in order to prevent re-replication. It has been shown that the N-terminal region of Cdc6p is targeted for degradation after phosphorylation by Cyclin Dependent Kinase (CDK). Here we show that Mck1p, a yeast homologue of GSK-3 kinase, is also required for Cdc6 degradation through a distinct mechanism. Cdc6 is an unstable protein and is accumulated in the nucleus only during G1 and early S-phase in wild-type cells. In mck1 deletion cells, CDC6p is stabilized and accumulates in the nucleus even in late S phase and mitosis. Overexpression of Mck1p induces rapid Cdc6p degradation in a manner dependent on Threonine-368, a GSK-3 phosphorylation consensus site, and SCFCDC4. We show evidence that Mck1p-dependent degradation of Cdc6 is required for prevention of DNA re-replication. Loss of Mck1 activity results in synthetic lethality with other pre-RC mutants previously implicated in re-replication control, and these double mutant strains over-replicate DNA within a single cell cycle. These results suggest that a GSK3 family protein plays an unexpected role in preventing DNA over-replication through Cdc6 degradation in Saccharomyces cerevisiae. We propose that both CDK and Mck1 kinases are required for Cdc6 degradation to ensure a tight control of DNA replication.  相似文献   

10.
The initiation of eukaryotic DNA replication involves origin recruitment and activation of the MCM2-7 complex, the putative replicative helicase. Mini-chromosome maintenance (MCM)2-7 recruitment to origins in G1 requires origin recognition complex (ORC), Cdt1, and Cdc6, and activation at G1/S requires MCM10 and the protein kinases Cdc7 and S-Cdk, which together recruit Cdc45, a putative MCM2-7 cofactor required for origin unwinding. Here, we show that the Xenopus BRCA1 COOH terminus repeat-containing Xmus101 protein is required for loading of Cdc45 onto the origin. Xmus101 chromatin association is dependent on ORC, and independent of S-Cdk and MCM2-7. These results define a new factor that is required for Cdc45 loading. Additionally, these findings indicate that the initiation complex assembly pathway bifurcates early, after ORC association with the origin, and that two parallel pathways, one controlled by MCM2-7, and the other by Xmus101, cooperate to load Cdc45 onto the origin.  相似文献   

11.
We report the identification of Cdc7/Dbf4 phosphorylation sites in human MCM2 and the determination of the role of Cdc7/Dbf4 phosphorylation of MCM2 in the initiation of DNA replication. Using immunoblotting, immunofluorescence, and high-speed automated cell-imaging analyses with antibodies specific against MCM2 and Cdc7/Dbf4 phosphorylated MCM2, we show that the chromatin recruitment and phosphorylation of MCM2 are regulated during the cell cycle in HeLa cells. Chromatin-bound MCM2 is phosphorylated by Cdc7/Dbf4 during G1/S, which coincides with the initiation of DNA replication. Moreover, we show that baculovirus-expressed purified MCM2-7 complex and its phosphomimetic MCM2E-7 complex display higher ATPase activity when compared with the nonphosphorylatable MCM2A-7 complex in vitro. Furthermore, suppression of MCM2 expression in HeLa cells by siRNA results in the inhibition of DNA replication. The inhibition can be rescued by the coexpression of wild type MCM2 or MCM2E but not MCM2A. Taken together, these results indicate that Cdc7/Dbf4 phosphorylation of MCM2 is essential for the initiation of DNA replication in mammalian cells.  相似文献   

12.
Dolan WP  Sherman DA  Forsburg SL 《Chromosoma》2004,113(3):145-156
Cdc45 is a conserved protein required for firing of replication origins and processive DNA replication. We used an in situ chromatin-binding assay to determine factors required for fission yeast Cdc45p chromatin binding. Assembly of the pre-replicative complex is essential for Cdc45p chromatin binding, but pre-replicative complex assembly occurs independently of Cdc45p. Fission yeast Cdc45p associates with MCM proteins in asynchronously growing cells and cells arrested in S phase by hydroxyurea, but not in cells arrested at the G2/M transition. Both hsk1+ (the fission yeast CDC7 homologue) and rad4+/cut5+ (the fission yeast DPB11 homologue) are required for Cdc45p chromatin binding. Cdc45p also remains chromatin-bound in mutants that fail to recover from replication arrest. In summary, Cdc45p chromatin binding requires an intact pre-replicative complex as well as signaling from both the Dbf4-dependent kinase and cyclin-dependent kinases.  相似文献   

13.
Eukaryotic cells coordinate chromosome duplication by assembly of protein complexes at origins of DNA replication and by activation of cyclin-dependent kinase and Cdc7p-Dbf4p kinase. We show in Saccharomyces cerevisiae that although Cdc7p levels are constant during the cell division cycle, Dbf4p and Cdc7p-Dbf4p kinase activity fluctuate. Dbf4p binds to chromatin near the G(1)/S-phase boundary well after binding of the minichromosome maintenance (Mcm) proteins, and it is stabilized at the non-permissive temperature in mutants of the anaphase-promoting complex, suggesting that Dbf4p is targeted for destruction by ubiquitin-mediated proteolysis. Arresting cells with hydroxyurea (HU) or with mutations in genes encoding DNA replication proteins results in a more stable, hyper-phosphorylated form of Dbf4p and an attenuated kinase activity. The Dbf4p phosphorylation in response to HU is RAD53 dependent. This suggests that an S-phase checkpoint function regulates Cdc7p-Dbf4p kinase activity. Cdc7p may also play a role in adapting from the checkpoint response since deletion of CDC7 results in HU hypersensitivity. Recombinant Cdc7p-Dbf4p kinase was purified and both subunits were autophosphorylated. Cdc7p-Dbf4p efficiently phosphorylates several proteins that are required for the initiation of DNA replication, including five of the six Mcm proteins and the p180 subunit of DNA polymerase alpha-primase.  相似文献   

14.
Pacek M  Walter JC 《The EMBO journal》2004,23(18):3667-3676
In vertebrates, MCM2-7 and Cdc45 are required for DNA replication initiation, but it is unknown whether they are also required for elongation, as in yeast. Moreover, although MCM2-7 is a prime candidate for the eukaryotic replicative DNA helicase, a demonstration that MCM2-7 unwinds DNA during replication is lacking. Here, we use Xenopus egg extracts to investigate the roles of MCM7 and Cdc45 in DNA replication. A fragment of the retinoblastoma protein, Rb(1-400), was used to neutralize MCM7, and antibodies were used to neutralize Cdc45. When added immediately after origin unwinding, or after significant DNA synthesis, both inhibitors blocked further DNA replication, indicating that MCM7 and Cdc45 are required throughout replication elongation in vertebrates. We next exploited the fact that inhibition of DNA polymerase by aphidicolin causes extensive chromosome unwinding, likely due to uncoupling of the replicative DNA helicase. Strikingly, Rb(1-400) and Cdc45 antibodies both abolished unwinding by the uncoupled helicase. These results provide new support for the model that MCM2-7 is the replicative DNA helicase, and they indicate that Cdc45 functions as a helicase co-factor.  相似文献   

15.
Very little is known about the expression patterns in plants of genes that encode proteins involved in the initiation of DNA replication. Partial cDNA sequences that encode Cdc6 and Mcm3 in tobacco have been isolated. The sequences were used as probes in northern blots which suggested that, in the cell cycle of synchronized tobacco BY-2 cells, expression of CDC6 is confined to late G(1) and S-phase whereas the expression of MCM3 is not confined to any particular cell cycle phase. These data were confirmed and extended by real-time PCR measurements of mRNA abundance through the cell cycle. CDC6 exhibits a very clear peak of expression in S-phase whereas MCM3, expressed at a much lower level than CDC6, is not cell-cycle-regulated. These patterns of cell cycle gene expression resemble those found in the fission yeast Schizosaccharomyces pombe rather than those in budding yeast or mammalian cells.  相似文献   

16.
Cdc45p assembles at replication origins before initia tion and is required for origin firing in Saccharomyces cerevisiae. A heat-inducible cdc45 degron mutant was constructed that promotes rapid degradation of Cdc45p at the restrictive temperature. Consistent with a role in initiation, loss of Cdc45p in G(1) prevents all detectable DNA replication without preventing subsequent entry into mitosis. Loss of Cdc45p activity during S-phase blocks S-phase completion but not activation of replication checkpoints. Using density substitution, we show that after allowing replication fork establishment, Cdc45p inactivation prevents the subsequent progression of individual replication forks. This provides the first direct functional evidence that Cdc45p plays an essential role during elongation. Thus, like the large T antigen in SV40 replication, Cdc45p plays a central role in both initiation and elongation phases of chromosomal DNA replication.  相似文献   

17.
18.
Cdc6p is a key regulator of the cell cycle in eukaryotes and is a member of the AAA(+) (ATPases associated with a variety of cellular activities) family of proteins. In this family of proteins, the sensor 1 and sensor 2 regions are important for their function and ATPase activity. Here, site-directed mutagenesis has been used to examine the role of these regions of Saccharomyces cerevisiae Cdc6p in controlling the cell cycle progression and initiation of DNA replication. Two important amino acid residues (Asn(263) in sensor 1 and Arg(332) in sensor 2) were identified as key residues for Cdc6p function in vivo. Cells expressing mutant Cdc6p (N263A or R332E) grew slowly and accumulated in the S phase. In cells expressing mutant Cdc6p, loading of the minichromosome maintenance (MCM) complex of proteins was decreased, suggesting that the slow progression of S phase in these cells was due to inefficient MCM loading on chromatin. Purified wild type Cdc6p but not mutant Cdc6p (N263A and R332E) caused the structural modification of origin recognition complex proteins. These results are consistent with the idea that Cdc6p uses its ATPase activity to change the conformation of origin recognition complex, and then together they recruit the MCM complex.  相似文献   

19.
Sheu YJ  Stillman B 《Molecular cell》2006,24(1):101-113
Origins of DNA replication are licensed in G1 by recruiting the minichromosome maintenance (MCM) proteins to form a prereplicative complex (pre-RC). Prior to initiation of DNA synthesis from each origin, a preinitiation complex (pre-IC) containing Cdc45 and other proteins is formed. We report that Cdc7-Dbf4 protein kinase (DDK) promotes assembly of a stable Cdc45-MCM complex exclusively on chromatin in S phase. In this complex, Mcm4 is hyperphosphorylated. Studies in vitro using purified DDK and Mcm4 demonstrate that hyperphosphorylation occurs at the Mcm4 N terminus. However, the DDK substrate specificity is conferred by an adjacent DDK-docking domain (DDD), sufficient for facilitating efficient phosphorylation of artificial phosphoacceptors in cis. Genetic evidence suggests that phosphorylation of Mcm4 by DDK is important for timely S phase progression and for cell viability upon overproduction of Cdc45. We suggest that DDK docks on and phosphorylates MCM proteins at licensed origins to promote proper assembly of pre-IC.  相似文献   

20.
The DNA unwinding element (DUE)-binding protein (DUE-B) binds to replication origins coordinately with the minichromosome maintenance (MCM) helicase and the helicase activator Cdc45 in vivo, and loads Cdc45 onto chromatin in Xenopus egg extracts. Human DUE-B also retains the aminoacyl-tRNA proofreading function of its shorter orthologs in lower organisms. Here we report that phosphorylation of the DUE-B unstructured C-terminal domain unique to higher organisms regulates DUE-B intermolecular binding. Gel filtration analyses show that unphosphorylated DUE-B forms multiple high molecular weight (HMW) complexes. Several aminoacyl-tRNA synthetases and Mcm2–7 proteins were identified by mass spectrometry of the HMW complexes. Aminoacyl-tRNA synthetase binding is RNase A sensitive, whereas interaction with Mcm2–7 is nuclease resistant. Unphosphorylated DUE-B HMW complex formation is decreased by PP2A inhibition or direct DUE-B phosphorylation, and increased by inhibition of Cdc7. These results indicate that the state of DUE-B phosphorylation is maintained by the equilibrium between Cdc7-dependent phosphorylation and PP2A-dependent dephosphorylation, each previously shown to regulate replication initiation. Alanine mutation of the DUE-B C-terminal phosphorylation target sites increases MCM binding but blocks Cdc45 loading in vivo and inhibits cell division. In egg extracts alanine mutation of the DUE-B C-terminal phosphorylation sites blocks Cdc45 loading and inhibits DNA replication. The effects of DUE-B C-terminal phosphorylation reveal a novel S phase kinase regulatory mechanism for Cdc45 loading and MCM helicase activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号