首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Persistent neuronal activity is usually studied in the context of short-term memory localized in central cortical areas. Recent studies show that early sensory areas also can have persistent representations of stimuli which emerge quickly (over tens of milliseconds) and decay slowly (over seconds). Traditional positive feedback models cannot explain sensory persistence for at least two reasons: (i) They show attractor dynamics, with transient perturbations resulting in a quasi-permanent change of system state, whereas sensory systems return to the original state after a transient. (ii) As we show, those positive feedback models which decay to baseline lose their persistence when their recurrent connections are subject to short-term depression, a common property of excitatory connections in early sensory areas. Dual time constant network behavior has also been implemented by nonlinear afferents producing a large transient input followed by much smaller steady state input. We show that such networks require unphysiologically large onset transients to produce the rise and decay observed in sensory areas. Our study explores how memory and persistence can be implemented in another model class, derivative feedback networks. We show that these networks can operate with two vastly different time courses, changing their state quickly when new information is coming in but retaining it for a long time, and that these capabilities are robust to short-term depression. Specifically, derivative feedback networks with short-term depression that acts differentially on positive and negative feedback projections are capable of dynamically changing their time constant, thus allowing fast onset and slow decay of responses without requiring unrealistically large input transients.  相似文献   

3.
The aim of the present study was to test whether breathing pattern conditioning may occur just after birth. We hypothesized that sensory stimuli signaling the resumption of maternal care after separation may trigger an arousal and/or orienting response accompanied with concomitant respiratory changes. We performed a conditioning experiment in 2-day-old mice by using an odor (lemon) as the conditioned stimulus (CS) and maternal care after 1 h without the mother as the unconditioned stimulus (US). Each pup underwent two acquisition trials, in which the CS was presented immediately before (experimental paired group, n = 30) or 30 min before (control unpaired group, n = 30) contact with the mother. Conditioning was tested by using noninvasive whole body plethysmography to measure the respiratory response to the CS for 1 min. We found significantly stronger respiratory responses to the CS in the experimental group than in the control group. In contrast, somatomotor activity did not differ significantly between groups. Our results confirm the sensitivity of breathing to conditioning and indirectly support the hypothesis that learned feedforward processes may complement feedback pathways during postnatal maturation of respiratory control.  相似文献   

4.
There have been several studies on the role of circadian clocks in the regulation of associative learning and memory processes in both vertebrate and invertebrate species. The results have been quite variable and at present it is unclear to what extent the variability observed reflects species differences or differences in methodology. Previous results have shown that following differential classical conditioning in the cockroach, Rhyparobia maderae, in an olfactory discrimination task, formation of the short-term and long-term memory is under strict circadian control. In contrast, there appeared to be no circadian regulation of the ability to recall established memories. In the present study, we show that following operant conditioning of the same species in a very similar olfactory discrimination task, there is no impact of the circadian system on either short-term or long-term memory formation. On the other hand, ability to recall established memories is strongly tied to the circadian phase of training. On the basis of these data and those previously reported for phylogenetically diverse species, it is suggested that there may be fundamental differences in the way the circadian system regulates learning and memory in classical and operant conditioning.  相似文献   

5.
An in vitro preparation consisting of the siphon, mantle, gill, and abdominal ganglion undergoes classical conditioning when a weak tactile stimulus (CS) applied to the siphon is paired with a strong tactile stimulus to the gill (UCS). When the stimuli are paired, the CS comes to evoke a gill withdrawal reflex (GWR) which increases in amplitude with training. Only when the stimuli are paired in a classical conditioning paradigm does the CS come to evoke a GWR. With classical conditioning training there is an alteration in the synaptic efficacy between central sensory neurons and central gill motor neurons. Moreover, these changes can be observed in sensory neurons not activated by the CS. The changes observed, as evidence by the number of action potentials evoked in the gill motor neuron do not completely parallel the observed behavioral changes. It is suggested that in addition to changes in the synaptic efficacy at the sensory-motor neuron synapse, other changes in neuronal activity occur at other loci which lead to the observed behavioral changes.  相似文献   

6.
Research on operant control of brain potentials is reviewed. From single-unit firing and spontaneous EEG activity to event-related potentials such as sensory and pain evoked potentials, and slow potential shifts, most of the aspects of electrical brain activity have been investigated. Results produced by conditioning of spontaneous EEG oscillations (alpha and theta) dampened the early enthusiasm: e.g., no increase above baseline levels could be achieved and no reliable behavioral effects became manifest. Evidence accumulates, however, that operant conditioning of the sensorimotor rhythm (12–15 Hz) may lead to successful self-regulation and that epileptic patients may profit from the training. First steps in the conditioning of brainstem, as well as pain evoked potentials suggest that self-regulation of EPs can be achieved by adequate biofeedback procedures. If some of the observed behavioral effects prove to be stable, the therapeutic usefulness seems to be within reach. A comparable progress has been achieved for the operant control of slow potentials (DC-shifts across seconds). Biofeedback procedures have been used successfully as a scientific tool to achieve systematic variations on a psychological level and to record psychological covariations. This method may provide insights into the behavioral meaning of electrical brain activity.  相似文献   

7.
This paper describes simulations of two context-dependence phenomena in Pavlovian conditioning, using a neural-network model that draws on knowledge from neuroscience and makes no distinction between operant and respondent learning mechanisms. One phenomenon is context specificity or the context-shift effect, the decrease of conditioned responding (CR) when the conditioned stimulus (CS) is tested in a context different from the one in which it had been paired with the unconditioned stimulus (US). The other effect is renewal, the recovery of CR in the training context after extinction in another context. For specificity (simulation 1), two neural networks were first given 200 CS-US pairings in a context. Then, the CS was tested either in the training context or a new context. Output activations in the new context were substantially lower. For renewal (simulation 2), two networks were first given 200 CS-US pairings in a context, then 100 extinction trials in either the same context or a new one, and then tested back in the training context. Output activations during the test phase were substantially higher after extinction in a new context. The results are interpreted in terms of the dynamics of activations and weights.  相似文献   

8.
Hermissenda CNS, immunolabeled for the memory protein calexcitin showed significant immunostaining over background in the B-photoreceptor cells of the eye. The degree of staining correlated positively with the number of Pavlovian training events experienced by the animals and the degree of Pavlovian conditioning induced. The training regime consisted of exposing animals to light (conditioned stimulus, CS) paired with orbital rotation (unconditioned stimulus, US). In animals that exhibited the conditioned response, calexcitin immunolabeling was more intense than was found for naive (unconditioned) animals or animals given the CS and US in random sequence. Animals exposed to lead (maintained in 1.2 ppm lead acetate) at a dosage known to impair learning in children, showed reduced learning and less intense calexcitin staining whether the CS and US were paired or given randomly. However, the levels were still higher than that of naive animals. Immuno-electron microscopy indicated that the labeling was predominantly within calcium sequestering organelles such as the endoplasmic reticulum, and to lesser extent within mitochondria, and photopigments. The calexcitin density after a short-term memory (STM) regime was the same whether measured 5 minutes after conditioning (when STM was evidenced by foot contraction) or 90 minutes later when no recall was detected. The staining density was also similar to the levels found 5 minutes after long-term memory (LTM) conditioning. However, the LTM regime produced a greater calexcitin intensity at 90 minutes when the memory had been consolidated. This learning-specific increase in calexcitin is consistent with the previously implicated sequence of molecular events that are associated with progressively longer time domains of memory storage.  相似文献   

9.
《Journal of Physiology》2013,107(6):452-458
Microelectrode recordings of cortical activity in primates performing working memory tasks reveal some cortical neurons exhibiting sustained or graded persistent elevations in firing rate during the period in which sensory information is actively maintained in short-term memory. These neurons are called “memory cells”. Imaging and transcranial magnetic stimulation studies indicate that memory cells may arise from distributed cortical networks. Depending on the sensory modality of the memorandum in working memory tasks, neurons exhibiting memory-correlated patterns of firing have been detected in different association cortices including prefrontal cortex, and primary sensory cortices as well.Here we elaborate on neurophysiological experiments that lead to our understanding of the neuromechanisms of working memory, and mainly discuss findings on widely distributed cortical networks involved in tactile working memory.  相似文献   

10.
Wild-type Drosophila melanogaster and the learning mutants dunce, amnesiac and rutabaga, were tested using a new operant conditioning paradigm for single flies. All strains are able to learn to different extents, but no evidence of memory was found in the mutants amnesiac and rutabaga, while dunce has a reduced but extended memory. The relationship between this characteristic and cAMP levels are discussed. The three mutants have previously been shown, using classical conditioning paradigms to be deficient in olfactory learning and/or memory, and show reduced visual learning. The variability of the response of the mutants in the different paradigms is discussed in relation to the generality of the Aplysia model of the cellular mechanism underlying learning. In the operant conditioning paradigm described here, 93% of the wild-type flies learned to criterion. The performance of individual flies was consistent.  相似文献   

11.
Part I of this paper describes a model for the parallel development and adult coding of neural feature detectors. It shows how any set of arbitrary spatial patterns can be recoded, or transformed, into any other spatial patterns (universal recoding), if there are sufficiently many cells in the network's cortex. This code is, however, unstable through time if arbitrarily many patterns can perturb a fixed number of cortical cells. This paper shows how to stabilize the code in the general case using feedback between cellular sites. A biochemically defined critical period is not necessary to stabilize the code, nor is it sufficient to ensure useful coding properties.We ask how short term memory can be reset in response to temporal sequences of spatial patterns. This leads to a context-dependent code in which no feature detector need uniquely characterize an input pattern; yet unique classification by the pattern of activity across feature detectors is possible. This property uses learned expectation mechanisms whereby unexpected patterns are temporarily suppressed and/or activate nonspecific arousal. The simplest case describes reciprocal interactions via trainable synaptic pathways (long term memory traces) between two recurrent on-center off-surround networks undergoing mass action (shunting) interactions. This unit can establish an adaptive resonance, or reverberation, between two regions if their coded patterns match, and can suppress the reverberation if their patterns do not match. This concept yields a model of olfactory coding within the olfactory bulb and prepyriform cortex. The resonance idea also includes the establishment of reverberation between conditioned reinforcers and generators of contingent negative variation if presently avialable sensory cues are compatible with the network's drive requirements at that time; and a search and lock mechanism whereby the disparity between two patterns can be minimized and the minimal disparity images locked into position. Stabilizing the code uses attentional mechanisms, in particular nonspecific arousal as a tuning and search device. We suggest that arousal is gated by a chemical transmitter system—for example, norepinephrine—whose relative states of accumulation at antagonistic pairs of on-cells and off-cells through time can shift the spatial pattern of STM activity across a field of feature detectors. For example, a sudden arousal increment in response to an un-expected pattern can reverse, or rebound, these relative activities, thereby suppressing incorrectly classified populations. The rebound mechanism has formal properties analogous to negative afterimages and spatial frequency adaptation.Supported in part by the Advanced Research Projects Agency under ONR Contract No. N00014-76-C-0185  相似文献   

12.
Sensory systems play an important role in cocaine addiction, perhaps most clearly demonstrated when stimuli (‘cues’) associated via classical conditioning with the effects of the drug, trigger craving and relapse. It has been shown in previous studies that administration of cocaine can enhance evoked responses in the primary sensory cortex of experimental animals. Given that the speed of learning in classical conditioning is affected by the intensity of the conditioned stimulus (CS), and that cocaine enhances the neural representation of sensory stimuli in the primary sensory cortex in a manner similar to an increase in intensity, we hypothesise that cue-induced craving in human addicts is facilitated by the drug. In short, cocaine speeds the process that leads to craving. This hypothesis is supported by the fact that cocaine enhances sensory responses in humans and leads to an improvement in attention (the putative intermediary between enhanced sensory responses and facilitated learning). Furthermore, cocaine affects neural loci which are known to play a role in learning and facilitates classical conditioning when present during acquisition. In addition, related drugs like d-amphetamine and ecstasy (which themselves produce craving) affect sensory processing and attention, and in the case of d-amphetamine facilitate human learning. It is therefore possible that cocaine itself plays a – previously under-appreciated – role in the formation of associations between drug and drug-related environmental cues by enhancing primary sensory responses. A corollary of this is that, as with other intense CSs, the established association may be particularly resistant to extinction, potentially explaining why cues continue to elicit craving months or even years after the last cocaine use.  相似文献   

13.
Testing visual sensitivity in any species provides basic information regarding behaviour, evolution, and ecology. However, testing specific features of the visual system provide more empirical evidence for functional applications. Investigation into the sensory system provides information about the sensory capacity, learning and memory ability, and establishes known baseline behaviour in which to gauge deviations (Burghardt, 1977). However, unlike mammalian or avian systems, testing for learning and memory in a reptile species is difficult. Furthermore, using an operant paradigm as a psychophysical measure of sensory ability is likewise as difficult. Historically, reptilian species have responded poorly to conditioning trials because of issues related to motivation, physiology, metabolism, and basic biological characteristics. Here, I demonstrate an operant paradigm used a novel model lizard species, the Jacky dragon (Amphibolurus muricatus) and describe how to test peripheral sensitivity to salient speed and motion characteristics. This method uses an innovative approach to assessing learning and sensory capacity in lizards. I employ the use of random-dot kinematograms (RDKs) to measure sensitivity to speed, and manipulate the level of signal strength by changing the proportion of dots moving in a coherent direction. RDKs do not represent a biologically meaningful stimulus, engages the visual system, and is a classic psychophysical tool used to measure sensitivity in humans and other animals. Here, RDKs are displayed to lizards using three video playback systems. Lizards are to select the direction (left or right) in which they perceive dots to be moving. Selection of the appropriate direction is reinforced by biologically important prey stimuli, simulated by computer-animated invertebrates.  相似文献   

14.
We assessed the effects of repeated extinction and reversals of two conditional stimuli (CS+/CS−) on an appetitive conditioned approach response in rats. Three results were observed that could not be accounted for by a simple linear operator model such as the one proposed by Rescorla and Wagner (1972): (1) responding to a CS− declined faster when a CS+ was simultaneously extinguished; (2) reacquisition of pre-extinction performance recovered rapidly within one session; and (3) reversal of CS+/CS− contingencies resulted in a more rapid recovery to the current CS− (former CS+) than the current CS+, accompanied by a slower acquisition of performance to the current CS+. An arousal parameter that mediates learning was introduced to a linear operator model to account for these effects. The arousal-mediated learning model adequately fit the data and predicted data from a second experiment with different rats in which only repeated reversals of CS+/CS− were assessed. According to this arousal-mediated learning model, learning is accelerated by US-elicited arousal and it slows down in the absence of US. Because arousal varies faster than conditioning, the model accounts for the decline in responding during extinction mainly through a reduction in arousal, not a change in learning. By preserving learning during extinction, the model is able to account for relapse effects like rapid reacquisition, renewal, and reinstatement.  相似文献   

15.
Research on the effects of self-regulation of slow potentials (SP) and event-related potentials (ERP) has failed to look at the possible interactions of these two kinds of brain potentials. The present study investigated such interactions by recording both ERP and SP potential changes in an operant ERP conditioning paradigm. Ten subjects participated in two conditions that were designed to differentially manipulate attention to the stimuli. In the operant conditioning task, subjects received auditory feedback as they attempted to increase the ERP amplitude at 180 msec poststimulus (P180), which was elicited by a subpainful shock stimulus to the forearm over 250 trials. In the distraction task, subjects were instructed not to attend to stimuli or feedback tones, but rather received and were tested on reading materials. Attention, as manipulated by these tasks, was not a determinant of changes in ERP amplitude since there were no significant differences in the size of P180 between attention conditions. While no significant change in the mean ERP amplitude occurred, subjects were able to produce ERPs above criterion threshold significantly more often during trials in the conditioning task than in the reading task. Thus, there was evidence of some learning. The difference in wave forms between hit and miss trials indicates a latency shift (with misses having a later ERP peak). This may indicate that latency, rather than, or in addition to, amplitude, is shaped during conditioning procedures. In addition, the CNV that developed between the shock stimulus and the feedback signal during conditioning was significantly larger in amplitude than in the distraction condition. This is taken as evidence of increased attention during conditioning. Since hit trials demonstrated larger contingent negative variation (CNV) amplitudes, production of CNVs may be instrumental in mediating hits. Therefore, attentional mechanisms may play a role in successful ERP self-regulation. No correlations were found involving P180, CNVs, or tonic slow potential shifts. Changes in tonic DC levels showed a suggestive trend between conditions. Although both conditions began with a negative shift, during conditioning the negativity increased, while during distraction the tonic level went to positivity. These trends support the hypothesis that attention and arousal increased during conditioning. The possible reasons for the lack of significant correlations between ERP and tonic or phasic slow potential changes in this paradigm are discussed.  相似文献   

16.
In France, beginning with 1946, the method of Ivanov-Smolenski was used to study schizophrenia, but after 1957, sensory conditioning procedures have been employed (EEG sound-light, evoked potentials in children, SAE conditioning in adults) and more recently eye blink and operant conditioning.  相似文献   

17.
Speciation by sensory drive can occur if divergent adaptation of sensory systems causes rapid evolution of mating traits and the resulting development of assortative mating. Previous theoretical studies have shown that sensory drive can cause rapid divergent adaptive evolution from one to two phenotypes. In this study, we examined two topics: the possibility of adaptive radiation by sensory drive from one to more than two phenotypes and the relationships of patterns of variation at selectively neutral genes to levels of viability selection, habitat and mating preferences and migration. We conducted individual-based simulations assuming a sensory trait and a mating trait controlled by a small number of loci. We found that adaptive radiation is possible when the number of loci controlling the sensory trait is small; the levels of viability selection, habitat and mating preferences are intermediate; and the emigration rate is high. We also found that emigration rates as well as the levels of habitat and mating preferences are related to F ST values at neutral loci, but F ST proved to be insensitive to a small change in the number of loci controlling the mating trait. This suggests that an estimation of the past population history is possible without an accurate genetic model.  相似文献   

18.
The common marmoset (Callithrix jacchus) is a small New World primate that has increasingly been used as a non-human model in the fields of sensory, motor, and cognitive neuroscience. However, little knowledge exists regarding behavioral methods in this species. Developing an understanding of the neural basis of perception and cognition in an animal model requires measurement of both brain activity and behavior. Here we describe an operant conditioning behavioral training method developed to allow controlled psychoacoustic measurements in marmosets. We demonstrate that marmosets can be trained to consistently perform a Go/No-Go auditory task in which a subject licks at a feeding tube when it detects a sound. Correct responses result in delivery of a food reward. Crucially, this operant conditioning task generates little body movement and is well suited for pairing behavior with single-unit electrophysiology. Successful implementation of an operant conditioning behavior opens the door to a wide range of new studies in the field of auditory neuroscience using the marmoset as a model system.  相似文献   

19.
Genetic perturbations of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate receptors (AMPARs) are widely used to dissect molecular mechanisms of sensory coding, learning, and memory. In this study, we investigated the role of Ca2+-permeable AMPARs in olfactory behavior. AMPAR modification was obtained by depletion of the GluR-B subunit or expression of unedited GluR-B(Q), both leading to increased Ca2+ permeability of AMPARs. Mice with this functional AMPAR switch, specifically in forebrain, showed enhanced olfactory discrimination and more rapid learning in a go/no-go operant conditioning task. Olfactory memory, however, was dramatically impaired. GluR-B depletion in forebrain was ectopically variable (“mosaic”) among individuals and strongly correlated with decreased olfactory memory in hippocampus and cortex. Accordingly, memory was rescued by transgenic GluR-B expression restricted to piriform cortex and hippocampus, while enhanced odor discrimination was independent of both GluR-B variability and transgenic GluR-B expression. Thus, correlated differences in behavior and levels of GluR-B expression allowed a mechanistic and spatial dissection of olfactory learning, discrimination, and memory capabilities.  相似文献   

20.
This review describes the advantages of adopting a molluscan complementary model, the freshwater snail Lymnaea stagnalis, to study the neural basis of learning and memory in appetitive and avoidance classical conditioning; as well as operant conditioning of its aerial respiratory and escape behaviour. We firstly explored ‘what we can teach Lymnaea’ by discussing a variety of sensitive, solid, easily reproducible and simple behavioural tests that have been used to uncover the memory abilities of this model system. Answering this question will allow us to open new frontiers in neuroscience and behavioural research to enhance our understanding of how the nervous system mediates learning and memory. In fact, from a translational perspective, Lymnaea and its nervous system can help to understand the neural transformation pathways from behavioural output to sensory coding in more complex systems like the mammalian brain. Moving on to the second question: ‘what can Lymnaea teach us?’, it is now known that Lymnaea shares important associative learning characteristics with vertebrates, including stimulus generalization, generalization of extinction and discriminative learning, opening the possibility to use snails as animal models for neuroscience translational research.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号