首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Evx genes are widely used in animal development. In vertebrates they are crucial in gastrulation, neurogenesis, appendage development and tailbud formation, whilst in protostomes they are involved in gastrulation and neurogenesis, as well as segmentation at least in Drosophila. We have cloned the Evx genes of amphioxus (Branchiostoma floridae), and analysed their expression to understand how the functions of Evx have evolved between invertebrates and vertebrates, and in particular at the origin of chordates and during their subsequent evolution. Amphioxus has two Evx genes (AmphiEvxA and AmphiEvxB) which are genomically linked. AmphiEvxA is prototypical to the vertebrate Evx1 and Evx2 genes with respect to its sequence and expression, whilst AmphiEvxB is very divergent. Mapping the expression of AmphiEvxA onto a phylogeny shows that a role in gastrulation, dorsal-ventral patterning and neurogenesis is probably retained throughout bilaterian animals. AmphiEvxA expression during tailbud development implies a role for Evx throughout the chordates in this process, whilst lack of expression at the homologous region to the vertebrate Midbrain-Hindbrain Boundary (MHB) is consistent with the elaboration of the full organiser properties of this region being a vertebrate innovation.  相似文献   

2.
The neural crest is a vertebrate innovation that forms at the embryonic neural plate border, transforms from epithelial to mesenchymal, migrates extensively throughout the embryo along well-defined pathways, and differentiates into a plethora of derivatives that include elements of peripheral nervous system, craniofacial skeleton, melanocytes, etc. The complex process of neural crest formation is guided by multiple regulatory modules that define neural crest gene regulatory network (NC GRN), which allows the neural crest to progressively acquire all of its defining characteristics. The molecular study of neural crest formation in lamprey, a basal extant vertebrate, consisting in identification and functional tests of molecular elements at each regulatory level of this network, has helped address the question of the timing of emergence of NC GRN and define its basal state. The results have revealed striking conservation in deployment of upstream factors and regulatory modules, suggesting that proximal portions of the network arose early in vertebrate evolution and have been tightly conserved for more than 500 million years. In contrast, certain differences were observed in deployment of some neural crest specifier and downstream effector genes expected to confer species-specific migratory and differentiation properties.  相似文献   

3.
4.
New genes in the evolution of the neural crest differentiation program   总被引:2,自引:0,他引:2  

Background  

Development of the vertebrate head depends on the multipotency and migratory behavior of neural crest derivatives. This cell population is considered a vertebrate innovation and, accordingly, chordate ancestors lacked neural crest counterparts. The identification of neural crest specification genes expressed in the neural plate of basal chordates, in addition to the discovery of pigmented migratory cells in ascidians, has challenged this hypothesis. These new findings revive the debate on what is new and what is ancient in the genetic program that controls neural crest formation.  相似文献   

5.
6.
Cranial neural crest (CNC) cells migrate extensively, typically in a pattern of cell streams. In Xenopus, these cells express the adhesion molecule Xcadherin-11 (Xcad-11) as they begin to emigrate from the neural fold. In order to study the function of this molecule, we have overexpressed wild-type Xcad-11 as well as Xcad-11 mutants with cytoplasmic (deltacXcad-11) or extracellular (deltaeXcad-11) deletions. Green fluorescent protein (GFP) was used to mark injected cells. We then transplanted parts of the fluorescent CNC at the premigratory stage into non-injected host embryos. This altered not only migration, but also the expression of neural crest markers. Migration of transplanted cranial neural crest cells was blocked when full-length Xcad-11 or its mutant lacking the beta-catenin-binding site (deltacXcad-11) was overexpressed. In addition, the expression of neural crest markers (AP-2, Snail and twist) diminished within the first four hours after grafting, and disappeared completely after 18 hours. Instead, these grafts expressed neural markers (2G9, nrp-I and N-Tubulin). Beta-catenin co-expression, heterotopic transplantation of CNC cells into the pharyngeal pouch area or both in combination failed to prevent neural differentiation of the grafts. By contrast, deltaeXcad-11 overexpression resulted in premature emigration of cells from the transplants. The AP-2 and Snail patterns remained unaffected in these migrating grafts, while twist expression was strongly reduced. Co-expression of deltaeXcad-11 and beta-catenin was able to rescue the loss of twist expression, indicating that Wnt/beta-catenin signalling is required to maintain twist expression during migration. These results show that migration is a prerequisite for neural crest differentiation. Endogenous Xcad-11 delays CNC migration. Xcad-11 expression must, however, be balanced, as overexpression prevents migration and leads to neural marker expression. Although Wnt/beta-catenin signalling is required to sustain twist expression during migration, it is not sufficient to block neural differentiation in non-migrating grafts.  相似文献   

7.
The neural crest serve as an excellent model to better understand mechanisms of embryonic cell migration. Cell tracing studies have shown that cranial neural crest cells (CNCCs) emerge from the dorsal neural tube in a rostrocaudal manner and are spatially distributed along stereotypical, long distance migratory routes to precise targets in the head and branchial arches. Although the CNCC migratory pattern is a beautifully choreographed and programmed invasion, the underlying orchestration of molecular events is not well known. For example, it is still unclear how single CNCCs react to signals that direct their choice of direction and how groups of CNCCs coordinate their interactions to arrive at a target in an ordered manner. In this review, we discuss recent cellular and molecular discoveries of the CNCC migratory pattern. We focus on events from the time when CNCCs encounter the tissue adjacent to the neural tube and their travel through different microenvironments and into the branchial arches. We describe the patterning of discrete cell migratory streams that emerge from the hindbrain, rhombomere (r) segments r1-r7, and the signals that coordinate directed migration. We propose a model that attempts to unify many complex events that establish the CNCC migratory pattern, and based on this model we integrate information between cranial and trunk neural crest development.  相似文献   

8.
As they initiate migration in vertebrate embryos, neural crest cells are enriched for methylation cycle enzymes, including S-adenosylhomocysteine hydrolase (SAHH), the only known enzyme to hydrolyze the feedback inhibitor of trans-methylation reactions. The importance of methylation in neural crest migration is unknown. Here, we show that SAHH is required for emigration of polarized neural crest cells, indicating that methylation is essential for neural crest migration. Although nuclear histone methylation regulates neural crest gene expression, SAHH and lysine-methylated proteins are abundant in the cytoplasm of migratory neural crest cells. Proteomic profiling of cytoplasmic, lysine-methylated proteins from migratory neural crest cells identified 182 proteins, several of which are cytoskeleton related. A methylation-resistant form of one of these proteins, the actin-binding protein elongation factor 1 alpha 1 (EF1α1), blocks neural crest migration. Altogether, these data reveal a novel and essential role for post-translational nonhistone protein methylation during neural crest migration and define a previously unknown requirement for EF1α1 methylation in migration.  相似文献   

9.
Neural crest cells (NCCs) are a remarkable, dynamic group of cells that travel long distances in the embryo to reach their target sites. They are responsible for the formation of craniofacial bones and cartilage, neurons and glia in the peripheral nervous system, and pigment cells. Live imaging of NCCs as they traverse the embryo has been critical to increasing our knowledge of their biology. NCCs exhibit multiple behaviors and communicate with each other and their environment along each step of their journey. Imaging combined with molecular manipulations has led to insights into the mechanisms controlling these behaviors. In this review, we highlight studies that have used live imaging to provide novel insight into NCC migration and discuss how continued use of such techniques can advance our understanding of NCC biology.  相似文献   

10.
Development and evolution of the neural crest: an overview   总被引:1,自引:0,他引:1  
The neural crest is a multipotent and migratory cell type that forms transiently in the developing vertebrate embryo. These cells emerge from the central nervous system, migrate extensively and give rise to diverse cell lineages including melanocytes, craniofacial cartilage and bone, peripheral and enteric neurons and glia, and smooth muscle. A vertebrate innovation, the gene regulatory network underlying neural crest formation appears to be highly conserved, even to the base of vertebrates. Here, we present an overview of important concepts in the neural crest field dating from its discovery 150 years ago to open questions that will motivate future research.  相似文献   

11.
12.
Many of the features that distinguish the vertebrates from other chordates are derived from the neural crest, and it has long been argued that the emergence of this multipotent embryonic population was a key innovation underpinning vertebrate evolution. More recently, however, a number of studies have suggested that the evolution of the neural crest was less sudden than previously believed. This has exposed the fact that neural crest, as evidenced by its repertoire of derivative cell types, has evolved through vertebrate evolution. In this light, attempts to derive a typological definition of neural crest, in terms of molecular signatures or networks, are unfounded. We propose a less restrictive, embryological definition of this cell type that facilitates, rather than precludes, investigating the evolution of neural crest. While the evolutionary origin of neural crest has attracted much attention, its subsequent evolution has received almost no attention and yet it is more readily open to experimental investigation and has greater relevance to understanding vertebrate evolution. Finally, we provide a brief outline of how the evolutionary emergence of neural crest potentiality may have proceeded, and how it may be investigated.  相似文献   

13.
Like many other migratory birds, the black-throated blue warbler (Dendroica caerulescens) shows pronounced differences in migratory behaviour and other traits between populations: birds in the southern part of the breeding range have darker plumage and migrate to the eastern Caribbean during the winter, whereas those in the north have lighter plumage and migrate to the western Caribbean. We examined the phylogeography of this species, using samples collected from northern and southern populations, to determine whether differentiation between these populations dates to the Pleistocene or earlier, or whether differences in plumage and migratory behaviour have arisen more recently. We analysed variation at 369 bp of the mitochondrial control region domain I and also at seven nuclear microsatellites. Analyses revealed considerable genetic variation, but the vast majority of this variation was found within rather than between populations, and there was little differentiation between northern and southern populations. Phylogeographic analyses revealed a very shallow phylogenetic tree, a star-like haplotype network, and a unimodal mismatch distribution, all indicative of a recent range expansion from a single refugium. Coalescent modelling approaches also indicated a recent common ancestor for the entire group of birds analysed, no split between northern and southern populations, and high levels of gene flow. These results show that Pleistocene or earlier events have played little role in creating differences between northern and southern populations, suggesting that migratory and other differences between populations have arisen very recently. The implications of these results for the evolution of migration and defining taxonomic groups for conservation efforts are discussed.  相似文献   

14.
Gene-regulatory interactions in neural crest evolution and development   总被引:2,自引:0,他引:2  
In this review, we outline the gene-regulatory interactions driving neural crest development and compare these to a hypothetical network operating in the embryonic ectoderm of the cephalochordate amphioxus. While the early stages of ectodermal patterning appear conserved between amphioxus and vertebrates, later activation of neural crest-specific factors at the neural plate border appears to be a vertebrate novelty. This difference may reflect co-option of genetic pathways which conferred novel properties upon the evolving vertebrate neural plate border, potentiating the evolution of definitive neural crest.  相似文献   

15.
16.
In this review, we describe the results of recent experiments designed to investigate various aspects of neural crest cell lineage and migration. We have analyzed the lineage of individual premigratory neural crest cells by injecting a fluorescent lineage tracer dye, lysinated fluorescein dextran, into cells within the dorsal neural tube. Individual clones contained cells that were located in very diverse sites consistent with their being sensory neurons, prepigment cells, Schwann cells, adrenergic cells, and neural tube cells. These results suggest that some neural crest cells in the trunk and cranial regions are multipotent prior to their emigration from the neural tube. The environment through which neural crest cells move influences both the pattern and direction of their migration. We have shown that the sclerotomal portion of the somites are responsible for the rostrocaudal pattern of trunk neural crest cell movement, whereas the neural tube appears to govern the dorsoventral position of neural crest-derived ganglia. In addition, the notochord inhibits the movement of neural crest cells. In order to understand necessary cell-matrix interactions in neural crest migration, we have performed perturbation experiments, in which antibodies directed against cell surface or extracellular matrix molecules were introduced along neural crest pathways. We find that integrins, fibronectin, laminin, and tenascin all play some role in cranial neural crest emigration. Thus, multiple factors may be involved in controlling neural crest cell migration, and different factors may be important for migration in different regions of the embryo.  相似文献   

17.
18.
Neural Crest Cells (NCCs) are transient multipotent migratory cells that derive from the embryonic neural crest which is itself derived from the margin of the neural tube. DNA repair genes are expressed in the early stages of mammalian development to reduce possible replication errors and genotoxic damage. Some birth defects and cancers are due to inappropriate or defective DNA repair machinery, indicating that the proper functioning of DNA repair genes in the early stages of fetal development is essential for maintaining DNA integrity. We performed a genome-wide expression analysis combining laser capture microdissection (LCM) and high-density oligo-microarray of murine NCCs at pre-migratory embryonic days 8.5 (E8.5), and at E13.5, as well as on neural crest-derived cells from the adrenal medulla at postnatal day 90. We found 11 genes involved in DNA repair activity (response to DNA damage stimulus, DNA damage checkpoint, base-excision repair, mismatch repair), over-expressed in the early stages of mouse embryo development. Expression of these 11 genes was very low or undetectable in the differentiated adrenal medulla of the adult mouse. Amongst the 11 genes, 6 had not been previously reported as being over-expressed during mouse embryonic development. High expression of DNA repair genes in enriched NCCs during early embryonic development may contribute to maintaining DNA integrity whilst failure of some of these genes may be associated with the onset of genetic disease and cancer. Our model of enriched murine NCCs and neural crest-derived cells can be used to elucidate the key roles of genes during normal embryonic development and in cancer pathogenesis.  相似文献   

19.
Previous work has revealed that proteins that bind to bone morphogenetic proteins (BMPs) and inhibit their signalling have a crucial role in the spatial and temporal regulation of cell differentiation and cell migration by BMPs. We have identified a chick homologue of crossveinless 2, a Drosophila gene that was identified in genetic studies as a promoter of BMP-like signalling. Chick Cv-2 has a conserved structure of five cysteine-rich repeats similar to those found in several BMP antagonists, and a C-terminal Von Willebrand type D domain. Cv-2 is expressed in the chick embryo in a number of tissues at sites at which elevated BMP signalling is required. One such site of expression is premigratory neural crest, in which at trunk levels threshold levels of BMP activity are required to initiate cell migration. We show that, when overexpressed, Cv-2 can weakly antagonise BMP4 activity in Xenopus embryos, but that in other in vitro assays Cv-2 can increase the activity of co-expressed BMP4. Furthermore, we find that increased expression of Cv-2 causes premature onset of trunk neural crest cell migration in the chick embryo, indicative of Cv-2 acting to promote BMP activity at an endogenous site of expression. We therefore propose that BMP signalling is modulated both by antagonists and by Cv-2 that acts to elevate BMP activity.  相似文献   

20.

Background

Collective neural crest cell migration is critical to the form and function of the vertebrate face and neck, distributing bone, cartilage, and nerve cells into peripheral targets that are intimately linked with head vasculature. The vasculature and neural crest structures are ultimately linked, but when and how these patterns develop in the early embryo are not well understood.

Results

Using in vivo imaging and sophisticated cell behavior analyses, we show that quail cranial neural crest and endothelial cells share common migratory paths, sort out in a dynamic multistep process, and display multiple types of motion. To better understand the underlying molecular signals, we examined the role of angiopoietin 2 (Ang2), which we found expressed in migrating cranial neural crest cells. Overexpression of Ang2 causes neural crest cells to be more exploratory as displayed by invasion of off-target locations, the widening of migratory streams into prohibitive zones, and differences in cell motility type. The enhanced exploratory phenotype correlates with increased phosphorylated focal adhesion kinase activity in migrating neural crest cells. In contrast, loss of Ang2 function reduces neural crest cell exploration. In both gain and loss of function of Ang2, we found disruptions to the timing and interplay between cranial neural crest and endothelial cells.

Conclusions

Together, these data demonstrate a role for Ang2 in maintaining collective cranial neural crest cell migration and suggest interdependence with endothelial cell migration during vertebrate head patterning.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号