首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Starch debranching enzyme was purified from intact spinach (Spinacia oleracea L. cv Vital) chloroplasts and from a spinach leaf extract using affinity chromatography on Sepharose 6B-bound cycloheptaamylose (Schardinger β-dextrin). The enzyme from both sources was homogeneous upon sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Spinach leaf debranching enzyme appears to consist of a single polypeptide chain, since the molecular weight of the native protein (110,000 daltons) was not changed by treatment with sodium dodecyl sulfate. Only one spinach leaf debranching enzyme band could be detected after electrophoresis of a leaf extract on amylopectin-containing polyacrylamide gel, the retardation factor of which coincided with that of the single band seen with the chloroplast enzyme. The purified enzyme exhibited strong pullulanase activity, the specific activity being 69 units per milligram protein with pullulan and 22 units per milligram protein with amylopectin. Cycloheptaamylose is a potent competitive inhibitor of spinach leaf debranching enzyme. The pH optimum of the enzyme was found to be 5.5. The purified enzyme is rather unstable at both 20° and 0°C. Part of the activity lost under storage or at a suboptimal pH could immediately be restored by the addition of thiols. The reactivatable protein, being of the same molecular weight as the native enzyme, exhibited a somewhat altered electrophoretic mobility resulting in one or two minor bands on a zymogram.  相似文献   

2.
Rabbit muscle glycogen debranching enzyme binds to all of a homologous series of ω-aminoalkyl agaroses. The debrancher can be eluted from ω-aminoethyl and ω-aminobutyl agarose with 0.5 m NaCl, and it desorbs more readily and elutes sooner from ω-aminoethyl agarose than from ω-aminobutyl agarose. No activity is eluted from ω-aminohexyl, octyl, or decyl agaroses. An improved purification procedure has been developed which includes chromatography on ω-aminoethyl agarose. This procedure enables the isolation of over 90% yield of the debranching enzyme from muscle within 3 days.  相似文献   

3.
An extracellular, debranching isoamylase fromHendersonula toruloidea ATCC 64930, grown on starch, was purified 12-fold to an electrophoretically homogeneous state. The purified enzyme (estimated mol wt 83000) was optimally active at pH 6.0 and 50°C and remained active when held at 70°C (30 min) and at pH 6 to 8 for 24 h. Na+, Fe2+ and Ba2+ (at 5mm) enhanced enzyme activity while Hg2+, Zn2+ and Cu2+ (at 5mm) were inhibitory. The enzyme hydrolysed amylopectin (Km, 0.25 mg/ml), forming maltose, maltotriose and maltotetraose and hydrolyzed glycogen (Km, 0.29 mg/ml) and soluble starch (Km, 0.42 mg/ml) forming maltotriose and maltotetraose. Pullulan was not hydrolyzed.  相似文献   

4.
5.
1. An NADP+-dependent malic enzyme was purified 7940-fold from the cytosolic fraction of human skeletal muscle with a final yield of 55.8% and a specific activity of 38.91 units/mg of protein. 2. The purification to homogeneity was achieved by ammonium sulfate fractionation, DEAE-Sepharose chromatography, affinity chromatography on NADP+-Agarose, gel filtration on Sephacryl S-300 and rechromatography on the affinity column. 3. Either Mn2+ or Mg2+ was required for activity: the pH optima with Mn2+ and Mg2+ were 8.1 and 7.5, respectively. The enzyme showed Michaelis-Menten kinetics. At pH 7.5 the apparent Km values with Mn2+ and Mg2+ for L-malate and NADP+ were 0.246 mM and 5.8 microM, and 0.304 mM and 5.8 microM, respectively. The Km values with Mn2+ for pyruvate, NADPH and bicarbonate were 8.6 mM, 6.1 microM and 22.2 mM, respectively. 4. The enzyme was also able to decarboxylate malate in the presence of NAD+. At pH 7.5 the reaction rate was approximately 10% of the rate in the presence of NADP+, with a Km value for NAD+ of 13.9 mM. 5. The following physical parameters were established: s0(20.w) = 10.48, Stokes' radius = 5.61 nm, pI = 5.72 Mr of the dissociated enzyme = 61,800. The estimates of the native apparent Mr yielded a value of 313,000 upon gel filtration, and 255,400 with f/fo = 1.33 by combining the chromatographic data with the sedimentation measurements. 6. The electron microscopy analysis of the uranyl acetate-stained enzyme revealed a tetrameric structure. 7. Investigations to detect sugar moieties indicated that the enzyme contains carbohydrate side chains, a property not previously reported for any other malic enzyme.  相似文献   

6.
1. Creatine kinase occurs in high concentration in the soluble proteins of dogfish muscle. A fourfold purification gives essentially pure enzyme but with a low specific activity. This appears to be a property of the native enzyme and not a result of the isolation procedures used. 2. The amino acid composition is similar to that of other phosphagen kinases, but the enzyme differs from mammalian creatine kinases in having four thiol groups readily reactive towards 5,5′-dithiobis-(2-nitrobenzoic acid). Titration of two thiol groups is accompanied by almost complete loss of activity. The remaining two thiol groups react at different rates, suggesting that modifying the third thiol group affects the reactivity of the fourth thiol group. 3. The enzyme is markedly protected against inactivation by iodoacetamide by MgATP or MgADP. Addition of creatine to MgADP decreases protection, but the further addition of Cl restores protection to the original value. The quaternary MgADP–creatine–enzyme–nitrate complex protects very strongly as is found for the rabbit enzyme. The involvement of the conformational state of the enzyme in such effects is discussed. 4. Creatine kinase from both dogfish and rabbit is equally sensitive to urea denaturation. Urea protects the dogfish enzyme by about 9% against inhibition by iodoacetamide. 5. The formation of a hybrid between the dogfish and rabbit enzymes in vitro has been demonstrated. 6. At high substrate concentrations the dogfish enzyme shows apparent ordered kinetics. The effect of temperature on Vmax. and the Michaelis constants for MgATP and creatine were determined. These and changes in the apparent activation energy suggest that limited adaptation has occurred commensurate with physiological need.  相似文献   

7.
Glycoconjugate Journal - Glycogen debranching enzyme (GDE) is bifunctional in that it exhibits both 4-α-glucanotransferase and amylo-α-1,6-glucosidase activity at two distinct catalytic...  相似文献   

8.
9.
T Kido  T Yamamoto    K Soda 《Journal of bacteriology》1976,126(3):1261-1265
A nitroalkane-oxidizing enzyme was purified about 1,300-fold from a cell extract of Hansenula mrakii grown in a medium containing nitroethane as the sole nitrogen source by ammonium sulfate fractionation, diethylaminoethyl-cellulose column chromatography, hydroxyapatite column chromatography, and Bio-Gel P-150 column chromatography. The enzyme was shown to be homogeneous upon acrylamide gel electrophoresis and ultracentrifugation. The enzyme exhibits absorption maxima at 274, 370, 415, and 440 nm and a shoulder at 470 nm. Balance studies showed that 2 mol of 2-nitropropane is converted into an equimolar amount of acetone and nitrite with the consumption of 1 mol of oxygen. Hydrogen peroxide is not formed in the enzyme reaction. In addition to 2-nitropropane, 1-nitropropane and nitroethane are oxidatively dentrified by the enzyme, but nitromethane is inert to the enzyme. The nitroalkanes are not oxidized under anaerobic conditions.  相似文献   

10.
A Krmer  W Keller 《The EMBO journal》1985,4(13A):3571-3581
We have used a complementation assay to test for activities required for the splicing of pre-mRNA in vitro. During the hypotonic lysis of HeLa cells, two components are released from the nuclei that specifically stimulate splicing in an extract prepared from washed nuclei. The two activities separate during chromatography on DEAE-Sepharose. One of these activities [splicing factor (SF)2] co-purified through several steps with the lariat debranching enzyme and with a nuclease which degrades the linear portion of lariat RNAs. These enzymes could, however, be separated from SF2 by chromatography on heparin-Sepharose. SF2 fractionates as a single protein with an apparent mol. wt. of 50 000. SF2 is resistant to mild heat treatment and to treatment with micrococcal nuclease, but it is inactivated by N-ethylmaleimide, suggesting that it is a protein which is not associated with an essential RNA component. When SF2 is absent in a complementation assay, the generation of both intermediates and final products of the splicing reaction is completely abolished. Thus, SF2 functions in an early step of the splicing process.  相似文献   

11.
cDNA comprising the entire length of the human muscle glycogen debranching enzyme was cloned and its nucleotide sequence determined. The debrancher mRNA includes a 4545-base pair coding region and a 2371-base pair 3'-nontranslated region. The calculated molecular mass of the debrancher protein derived from cDNA sequence is 172,614 daltons, consistent with the estimated size of purified protein (Mr 165,000 +/- 500). A partial amino acid sequence (13 internal tryptic peptides with a total of 213 residues) determined on peptides derived from purified porcine muscle debrancher protein confirmed the identity of the cDNA clone. Comparison of the amino acid sequence predicted from the human glycogen debrancher cDNA with the partial protein sequence of the porcine debrancher revealed a high degree (88%) of interspecies sequence identity. RNA blot analysis showed that debrancher mRNA in human muscle, lymphoblastoid cells, and in porcine muscle are all similar in size (approximately 7 kilobases). Two patients with inherited debrancher deficiency had a reduced level of debrancher mRNA, whereas two other patients had no detectable abnormality in RNA blots. The isolation of the debrancher cDNA and determination of its primary structure is an important step toward defining the structure-function relationship of this multifunctional enzyme and in understanding the molecular basis of the type III glycogen storage disease.  相似文献   

12.
13.
14.
15.
1. A proteolytic enzyme with some features of a carboxypeptidase has been purified some 1180-fold from the sap of French beans (Phaseolus vulgaris var. Prince). A bright blue protein, plastocyanin, was separated from the enzyme by DEAE-cellulose chromatography. 2. Unlike carboxypeptidase A or B of animal origin, there is no evidence that the enzyme is a metalloprotein. There was no stimulation of activity by a number of metal ions, reducing agents or 2-mercapto-ethanol. Neither EDTA nor 1,10-o-phenanthroline inhibited the enzyme. 3. The proteolytic enzyme from beans, readily soluble at neutral or slightly acidic pH values, has a pH optimum of pH5.6 for the hydrolysis of leucine from benzyloxy-carbonylglycyl-l-leucine. Solutions of the enzyme in 0.1m-sodium acetate, pH5.5, lose about 2% of their activity/week at 4 degrees . Virtually no loss of activity results after prolonged storage at -15 degrees . 4. Incubation of the bean enzyme with peptides indicates that the enzyme will release acidic, neutral and basic amino acid residues as well as proline, although adjacent acidic residues in a peptide appear to inhibit the enzyme. The possibility of endopeptidase activity in the purified preparation requires further examination.  相似文献   

16.
17.
A carboxypeptidase B (CPB) has been purified from dogfish (Scyliorhinus canicula) pancreas and partially characterized. The purification procedure included acetone precipitation, ion-exchange chromatography on a CM-cellulose column and gel filtration on Sephadex G-75. The purified enzyme migrates as a single band both on PAGE and SDS-PAGE. Its molecular mass is estimated to be about 32 kDa. The optimum of activity is obtained at pH 7.5–8.2. The enzyme is inhibited by typical metal-chelating agents (EDTA and o-phenanthroline) and by Hg2+. It is activated by Co2+, l-cysteine and by heat treatment at 40° and 50°C. Kinetic parameters, Km and kcat, of native enzyme, Co2+-activated CPB and heat-treated CPB have been determined  相似文献   

18.
19.
Purification of a RNA debranching activity from HeLa cells   总被引:6,自引:0,他引:6  
The splicing of messenger RNA precursors (pre-mRNA) of eukaryotic cells involves the formation of a branched RNA intermediate known as a RNA lariat. This structure is formed in the first step of the reaction when a cleavage at the 5' splice site generates the 5' exon and a RNA species containing the intron and 3' exon in which the phosphate moiety at the 5' end of the intron is forming a 2'-5' phosphodiester bond with the 2'-hydroxyl moiety of a specific adenine residue near the 3' end of the intron forming a RNA branch with the following structure: -pA2'-pX-3'-pZ-. We have purified a debranching activity approximately 700-fold from the cytosolic fraction of HeLa cells. This activity catalyzes the hydrolysis of the 2'-5' phosphodiester bond of branched RNA structures yielding a 5'-phosphate end and a 2'-hydroxyl group at the branch attachment site. The activity possessed a sedimentation coefficient of 3.5 S. The reaction catalyzed by the purified fraction requires a divalent cation and is optimal at pH 7.0. The purified activity can efficiently hydrolyze triester trinucleotide structures (pY2'-pX-3'-pZ-) prepared by digestion of RNA lariats with nuclease P1. In contrast, a 2' phosphate monoester product (-pG2'-p 3'-pC-), formed by the wheat germ RNA ligase, was not attacked.  相似文献   

20.
Amylo-1,6-glucosidase from porcine brain was purified to homogeneity by ammonium sulfate fractionation, followed by sequential steps of liquid chromatography on DEAE-Sephacel, Sephacryl S-300, and Super Q. The purified enzyme had both maltooligosaccharide transferase and amylo-1,6-glucosidase activities within a single polypeptide chain, and the combination of these two activities removed the branches of phosphorylase limit dextrin. Based on these results, the purified enzyme was identified as a glycogen debranching enzyme (GDE). The molecular weight of the brain GDE was 170,000 by gel-filtration and 165,000 by reducing SDS-PAGE. The pH profile of maltooligosaccharide transferase activity coincided with that of the amylo-1,6-glucosidase activity (pH optimum at 6.0). The existence of GDE as well as glycogen phosphorylase in the brain explains brain glycogenolysis fully and supports the hypothesis that glycogen is a significant source of energy in this organ.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号