首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
Iron chlorosis induced by Fe-deficiency is a widespread nutritional disorder in many woody plants and in particular in grapevine. This phenomenon results from different environmental, nutritional and varietal factors. Strategy I plants respond to Fe-deficiency by inducing physiological and biochemical modifications in order to increase Fe uptake. Among these, acidification of the rhizosphere, membrane redox activities and synthesis of organic acids are greatly enhanced during Fe-deficiency. Grapevine is a strategy I plant but the knowledge on the physiological and biochemical responses to this iron stress deficiency in this plant is still very poor. In this work four different genotypes of grapevine were assayed for these parameters. It was found that there is a good correlation between genotypes which are known to be chlorosis-resistant and increase in both rhizosphere acidification and FeIII reductase activity. In particular, when grown in the absence of iron, Vitis berlandieri and Vitis vinifera cv Cabernet sauvignon and cv Pinot blanc show a higher capacity to acidify the culture medium (pH was decreased by 2 units), a higher concentration of organic acids, a higher resting transmembrane electrical potential and a greater capacity to reduce FeIII-chelates. On the contrary, Vitis riparia, well known for its susceptibility to iron chlorosis, fails to decrease the pH of the medium and shows a lower concentration in organic acids, lower capacity to reduce FeIII and no difference in the resting transmembrane electrical potential. H Marschner Section editor  相似文献   

2.
Viticulture has historically depended upon clonal propagation of winegrape, tablegrape, and rootstock cultivars. Dependence on clonal propagation is perpetuated by consumer preference, legal regulations, a reproductive biology that is incompatible with sustaining genetic lines, and the fact that grapevine breeding is a slow process. Adventitious root formation is a key component to successful clonal propagation. In spite of this fact, grapevine has not been a centerpiece for adventitious root research. Dormant woody canes represent complex assemblages of tissues and organs. Factors that further contribute to such complexity include levels of endogenous plant growth regulators, the extent and duration of dormancy, carbohydrate storage, transport, the presence or absence of dormant buds or emergent shoots, and preconditioning treatments. For the above reasons, the mechanisms driving adventitious root formation by grapevine and other woody cuttings are poorly understood. We present results indicating that the dormant bud on cane cuttings from a non-recalcitrant to root Vitis vinifera cultivar, cv. Cabernet Sauvignon, slows or inhibits adventitious root emergence. In contrast to Cabernet Sauvignon, removal of the dormant bud from cane cuttings of a recalcitrant to root hybrid rootstock (V. berlandieri × V. riparia cv. 420A) and an intermediate to root hybrid rootstock (V. riparia × V. rupestris cv. 101-14) had no influence on adventitious root emergence. Reciprocal transplanting of nodes containing dormant buds among all three cultivars did not affect rooting behavior. Our results indicate that the commonly held belief that bud removal diminishes adventitious root emergence is not true.  相似文献   

3.
Embryogenic cell suspensions of two grapevine rootstocks: 110 Ritcher (V. berlandieri × V. rupestris), 41B (V. vinifera × V. berlandieri) and several table grape and wine cultivars (Vitis vinifera) were successfully cryopreserved by the encapsulation–vitrification method. Embryogenic cell suspensions were precultured for 3 days in liquid MGN medium supplemented with daily increasing sucrose concentrations of 0.25, 0.5, 0.75 M. Precultured cells were encapsulated and directly dehydrated with a highly concentrated vitrification solution prior to immersion in liquid nitrogen for 1 h. After rewarming at 40 °C for 3 min, cryopreserved cells were post-cultured on solid MGN medium supplemented with 2.5 g l–1 activated charcoal. Surviving cells were transferred to solid MGN medium for regrowth or solid MG medium for embryo development and then to solid WPM for plant regeneration. Optimal viability was 42–76% of cryopreserved cells when cell suspensions were precultured with a final sucrose concentration of 0.75 M and dehydrated with PVS2 at 0 °C for 270 min. Biochemical analysis showed that sucrose preculture caused changes in levels of total soluble protein and sugars in cell suspensions. Although the increase in fresh weight was significantly lower in cryopreserved cells than in control cells, the growth pattern of the cryopreserved cells and control cells was the same after two subcultures, following re-establishment in cell suspensions. Protocol developed in this study suggests a universal and highly efficient cryopreservation system suitable for several genetically diversed Vitis species.  相似文献   

4.
Recombination rate data are presented for three populations of grape based on framework genetic linkage maps developed with simple-sequence repeat markers. These linkage maps were constructed from different Vitis species and represent three genetic backgrounds. The first population is pure Vitis vinifera, derived from a cross of the European cultivars Riesling and Cabernet Sauvignon. The second is an interspecific cross between two commercially used rootstock cultivars of different North American Vitis species parentage, Ramsey (Vitis champinii) and Riparia Gloire (Vitis riparia). The third population, D8909-15 (Vitis rupestris × (Vitis arizonica/Vitis girdiana form)) × F8909-17 (V. rupestris × (V. arizonica/Vitis candicans form)), is an F1 from two half-sibs. Genome-wide and chromosome-wide recombination rates varied across the three populations and among the six Vitis parents. Global recombination rates in the parents of the third F1 population, with a complex Vitis background, were significantly reduced. In the first and third populations, the recombination rate was significantly greater in the male parent. Specific genome locations with frequent heterogeneity in recombination were identified, suggesting that recombination rates are not equal across the Vitis genome. The identification of regions with suppressed or high recombination will aid grape breeders and geneticists who rely on recombination events to introgress disease resistance genes from the genomes of wild Vitis species, develop fine-scale genetic maps, and clone disease resistance genes. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

5.
Bertamini  M.  Nedunchezhian  N. 《Photosynthetica》2002,40(4):597-603
Photoinhibition of photosynthesis was investigated in Vitis berlandieri and Vitis rupestris leaves under field conditions at different sampling time in a day. The degree of photoinhibition was determined by means of the ratio of variable to maximum chlorophyll fluorescence (Fv/Fm) and photosynthetic electron transport measurements. When the photochemical efficiency of PS2, Fv/Fm, markedly declined, F0 increased significantly in leaves of V. berlandieri, while F0 did not increase in V. rupestris leaves. Isolated thylakoids of leaves of V. berlandieri showed significant inhibition of whole chain and PS2 activities at midday. A smaller inhibition was observed for V. rupestris. Later, the leaves reached maximum PS2 efficiencies similar to those observed early in the morning during sampling at evening. The artificial exogenous electron donor Mn2+ failed to restore PS2 activity in both species, while DPC and NH2OH significantly restored PS2 activity in V. rupestris midday leaf samples. Quantification of the PS2 reaction centre protein D1 and 33 kDa protein of water splitting complex following midday exposure of leaves showed pronounced differences between V. berlandieri and V. rupestris leaves. The marked loss of PS2 activity noticed in midday samples was mainly due to the marked loss of D1 protein in V. berlandieri while in V. rupestris it was the 33 kDa protein.  相似文献   

6.
A truncated form of the Ti-plasmid virE2 gene from Agrobacterium tumefaciens strains C58 and A6, and A. vitis strain CG450 was transferred and expressed in somatic embryos of grapevine rootstocks 110 Richter (Vitis rupestris × V. berlandieri), 3309 Couderc (V. rupestris × V. riparia) and Teleki 5C (V. berlandieri × V. riparia) via Agrobacterium-mediated transformation to confer resistance to crown gall disease. Transformation was confirmed in 98% of the 322 lines by enzyme-linked immunosorbent assay for the neomycin phosphotransferase II protein and 97% of 295 lines by polymerase chain reaction for the truncated virE2 transgene. Southern blot analysis revealed the insertion of truncated virE2 at one to three loci in a subset of seven transgenic 110 Richter lines. In vitro resistance screening assays based on inoculations of shoot internode sections showed reduced tumorigenicity and very small galls in 23 of 154 transgenic lines. Non-transformed controls had a 100% tumorigenicity rate with very large galls. Disease resistance assay at the whole plant level in the greenhouse revealed seven transgenic lines (3 lines of 110 Richter, 2 lines of 3309 Couderc and 2 lines of Teleki 5C) were resistant to A. tumefaciens strain C58 and A. vitis strains TM4 and CG450 with a substantially reduced percentage of inoculation sites showing gall as compared to controls. No association was found between the level of resistance to crown gall disease and the source Agrobacterium strain of virE2. Taken together, our data showed that resistance to crown gall disease can be achieved by expressing a truncated form of virE2 in grapevines.  相似文献   

7.
Vitis rupestris is used as rootstock or to obtain hybrids with Vitis vinifera, due to its resistance to certain pathogens. Its resistance mechanisms are poorly understood, while it is known that stilbene neo‐synthesis is a central defense strategy in V. vinifera. In the present study, the response to methyl jasmonate (MeJa) and light treatment in terms of stilbene biosynthesis and the expression of genes involved in polyphenol biosynthesis was investigated in V. vinifera and V. rupestris cells. The two species exhibited a similar constitutive stilbene content [2.50–2.80 mg g?1 dry weight (DW)], which greatly increased in response to elicitation (8.97–11.90 mg g?1 DW). In V. vinifera, continuous light treatment amplified the effect of MeJa, with a stilbene production that had never previously been obtained (26.49 mg g?1 DW). By contrast, it suppressed the effect of MeJa in V. rupestris. Gene expression was consistent with stilbene production in V. vinifera, whereas discrepancies were recorded in V. rupestris that could be explained by the synthesis of stilbenes that had never before been analyzed in this species.  相似文献   

8.
Roots from cuttings of grapevine rootstocks V. Berlandieri × V. rupestris 140 Ru, V. Berlandieri × V. riparia SO4, V. riparia × V. rupestris 101–14 and a V. vinifera cultivar (Pinot blanc), with a decreasing degree of chlorosis resistance, were excised and tested to quantify physiological and morphological parameters, as follows: 59Fe uptake from an FeEDTA solution; reducing capacity; root diameter and root hair occurrence.The most significant findings are that: a) 59Fe uptake and FeEDTA reduction decreased from the most chlorosis resistant rootstock (140 Ru) to the most susceptible one (101–14) and to Pinot blanc; b) 59Fe uptake and reducing capacity were closely related; c) iron uptake and reduction were closely related to the root diameter and root hair occurrence, within the rootstocks.  相似文献   

9.
Teleki rootstocks are used in grapevine-producing countries all over the world. They represent one of the largest groups of available rootstocks but their origin is still in dispute although they have been regarded as Vitis berlandieri × V. riparia hybrids. To investigate their possible origin, we amplified and sequenced three chloroplast regions, two non-coding spacers (trnL-F, trnS-G) and the trnL group I intron in a core collection of Teleki rootstocks representing widespread accessions and related wild North American grape species (V. berlandieri, V. riparia and V. rupestris). Concatenated sequence data coupled with microstructural changes discovered in the chloroplast regions provided data to trace the maternal ancestry of the Teleki lines. All chloroplast regions showed both nucleotide and length variation. Length mutations in the non-coding regions represented mostly simple sequence repeats of poly-A and -T stretches. These indel characters exhibited additional diversity comparable with the nucleotide diversity and increased resolution of the phylogenetic trees. We found that a group of Teleki accessions position together with the wild grape species V. riparia. Another group of Teleki rootstocks formed a sister group to the other North American species V. berlandieri. These clades had moderate support values, and they do not share ancestry with other accessions of Teleki rootstocks resolved with high support value in the V. riparia clade. It seems that Teleki-Kober 5BB and 125 AA accessions might have a V. berlandieri maternal background. We also found great differences within putative clones of Teleki 5C and Teleki-Kober 5BB suggesting that the selection of these accessions was performed on heterogenous or mislabeled plant material collectively maintained under these names.  相似文献   

10.
Viticulture has historically depended upon clonal propagation of winegrape, tablegrape, and rootstock cultivars. Dependence on clonal propagation is perpetuated by consumer preference, legal regulations, a reproductive biology that is incompatible with sustaining genetic lines, and the fact that grapevine breeding is a slow process. Adventitious root formation is a key component to successful clonal propagation. In spite of this fact, grapevine has not been a centerpiece for adventitious root research. Dormant woody canes represent complex assemblages of tissues and organs. Factors that further contribute to such complexity include levels of endogenous plant growth regulators, the extent and duration of dormancy, carbohydrate storage, transport, the presence or absence of dormant buds or emergent shoots, and preconditioning treatments. For the above reasons, the mechanisms driving adventitious root formation by grapevine and other woody cuttings are poorly understood. We present results indicating that the dormant bud on cane cuttings from a non-recalcitrant to root Vitis vinifera cultivar, cv. Cabernet Sauvignon, slows or inhibits adventitious root emergence. In contrast to Cabernet Sauvignon, removal of the dormant bud from cane cuttings of a recalcitrant to root hybrid rootstock (V. berlandieri × V. riparia cv. 420A) and an intermediate to root hybrid rootstock (V. riparia × V. rupestris cv. 101-14) had no influence on adventitious root emergence. Reciprocal transplanting of nodes containing dormant buds among all three cultivars did not affect rooting behavior. Our results indicate that the commonly held belief that bud removal diminishes adventitious root emergence is not true.  相似文献   

11.
Two Vitis species were cultured in vitro under photoautrophic (sucrose-free culture medium) and photomixotrophic (sucrose 15 g l-1) conditions during the period following microcutting rooting (day 34 to day 120). Several parameters were measured at the end of the culture: growth, plant dry weight, carbohydrate uptake from the medium and rates of photosynthesis and dark respiration. The two species behaved very differently. Under photoautotrophic conditions, dark respiration, net photosynthesis and daily CO2 fixation were higher in Vitis vinifera than in Vitis rupestris. Culture under mixotrophic conditions caused increase in growth, respiration and photosynthesis in Vitis rupestris. In contrast, photosynthesis decreased in Vitis vinifera under the same conditions.  相似文献   

12.
Iron is essential to plants for chlorophyll formation as well as for the functioning of various iron-containing enzymes. Iron deficiency chlorosis is a wide-spread disorder of plants, in particular, of those growing on calcareous soils. Among the different ways to control iron deficiency problems for crops, plant material and especially rootstock breeding is a suitable and reliable method, especially for fruit trees and grapes. The aim of the experiment was to characterize the genetic basis of grapevine chlorosis tolerance under lime stress conditions. A segregating population of 138 F1 genotypes issued from an inter-specific cross between Vitis vinifera Cabernet Sauvignon (tolerant) × V. riparia Gloire de Montpellier (sensitive) was developed and phenotyped both as cuttings and as rootstock grafted with Cabernet Sauvignon scions in pots containing non-chlorosing and chlorosing soils. Tolerance was evaluated by chlorosis score, leaf chlorophyll content and growth parameters of the shoots and roots. The experiments were performed in 2001, 2003 and 2006. The plants analysed in 2006 were reassessed in 2007. The most significant findings of the trial were: (a) the soil properties strongly affect plant development, (b) there are differences in tolerance among segregating genotypes when grown as cuttings or as rootstocks on calcareous soil, (c) calcareous conditions induced chlorosis and revealed quantitative trait loci (QTLs) implicated in polygenic control of tolerance, (d) rootstock strongly contributes to lime-induced chlorosis response, and (e) a QTL with strong effect (from 10 to 25 % of the chlorotic symptom variance) was identified on chromosome 13. This QTL colocalized with a QTL for chlorophyll content (R 2 = 22 %) and a major QTL for plant development that explains about 50 % of both aerial and root system biomass variation. These findings were supported by stable results among the different years of experiment. These results open new insights into the genetic control of chlorosis tolerance and could aid the development of iron chlorosis-tolerant rootstocks.  相似文献   

13.
The effect of Medicago sativa (alfalfa) ferritin gene (MsFer) on abiotic stress tolerance was tested using transgenic Vitis berlandieri × Vitis rupestris cv. ‘Richter 110’ grapevine rootstock lines. Leaf discs from transgenic plants maintained higher photosynthetic activity after NaCl, tert-butyl-hydroperoxide (t-BHP) or paraquat treatment than control ones. These results indicate that the increased production of ferritin significantly improved abiotic stress tolerance in transgenic grapevine plants.  相似文献   

14.
Inter-simple sequence repeat (ISSR) markers were employed to detect the genetic diversity among 70 grape accessions including 52 clones of 17 Chinese wild grape species, seven interspecific hybrids, 10 Vitis vinifera L. cultivars, and one strain of Vitis riparia L. A total of 119 polymorphic bands with an average of 11.9 per primer were observed. The unweighted pair-group method (UPGMA) analysis indicated that the 70 clones or accessions had a similarity range from 0.08 to 0.93, indicating that abundant diversities exist among these accessions. Based on cluster analysis and principal coordinate analysis, all accessions could be divided into two major groups, the Chinese wild grape group, and the American and European cultivar group. The largest distance was found among V. riparia MichX, Vitis piasezkii, V. vinifera L. interspecific hybrid (Vitis binifera × V. labrusca) and the wild grapes native to China.  相似文献   

15.
Grapevine rootstock cultivar ‘B?rner’ is a hybrid of Vitis riparia and Vitis cinerea Arnold that shows high resistance to phylloxera (Daktulosphaira vitifoliae Fitch). To localize the determinants of phylloxera root resistance, the susceptible grapevine V3125 (Vitis vinifera ‘Schiava grossa’ × ‘Riesling’) was crossed to ‘B?rner’. Genetic framework maps were built from the progeny. 235 microsatellite markers were placed on the integrated parental map. They cover 1,155.98 cM on 19 linkage groups with an average marker distance of 4.8 cM. Phylloxera resistance was scored by counting nodosities after inoculation of the root system. Progeny plants were triplicated and experimentally infected in 2 years. A scan of the genetic maps indicated a quantitative trait locus on linkage group 13. This region was targeted by six microsatellite-type markers newly developed from the V. vinifera model genome sequence. Two of these appear closely linked to the trait, and can be useful for marker-assisted breeding.  相似文献   

16.
Species, varieties, and hybrids of Vitis are differently susceptible to feeding by the aphid Daktulosphaira vitifoliae (Fitch) (Hemiptera: Phylloxeridae). The differing levels of susceptibility were examined in Vitis riparia × V. rupestris cv. C-3309, V. vinifera × V. labrusca cv. Weiβe Amerikaner, and V. vinifera cv. Portugieser Weiβherbst by characterizing early subcellular changes to aphid feeding. We examined the fifth and sixth layers of mesophyll parenchyma between 3 and 48 h after introducing neonate nymphs of D. vitifoliae on to those leaves. In the susceptible variety C-3309, activated and metaplasied cells appeared in 3–6 h of feeding by D. vitifoliae and developed into nutritive tissue in the next 24–48 h. On the contrary, cells of the resistant variety Portugieser Weiβherbst accumulated phenolic materials indicating a hypersensitive response; those of Weiβe Amerikaner showed a mixed response of developing a nutritive tissue and a concurrent accumulation of phenolic materials especially in cells away from the nutritive tissue, indicating that this hybrid could tolerate D. vitifoliae. Galls developed on the leaves of C-3309 in 21 days, whereas no gall development occurred on the leaves of Portugieser Weiβherbst and Weiβe Amerikaner. D. vitifoliae nymphs introduced on the leaves of Portugieser Weiβherbst died in 3–4 days, whereas on the leaves of Weiβe Amerikaner, nymphs lived up to 21 days. Thus early subcellular changes in leaf tissues determined the feeding activity of nymphs on leaves and the susceptibility of plants to insect feeding.
Zusammenfassung  Bl?tter verschiedener Rebsorten reagieren unterschiedlich auf den Befall mit der Reblaus Daktulosphaira vitifoliae (Fitch). Hier wurde die Reaktion der Sorten Vitis riparia × V. rupestris cv. C-3309, V. vinifera × V. labrusca cv. Weiβe Amerikaner und V. vinifera cv. Portugieser Weiβherbst (kurz: C-3309, Weiβe Amerikaner und Portugieser Weiβherbst) verglichen, um die unterschiedliche Empfindlichkeit zu verstehen. Dazu wurden frühe subzellul?re Ver?nderungen der Blattgewebe in aseptischen Dualkulturen aus Vitis und D. vitifoliae charakterisiert. Da die Stechborsten der jungen Nymphen von D. vitifoliae bis in die fünfte oder sechste Mesophyllschicht von C-3309 eindringen, wurden Zellen dieser Schichten bei allen drei Rebsorten 3–48 Stunden nach Zugabe der Nymphen beobachtet. Bei der Sorte C-3309 erfolgte eine Differenzierung von aktivierten und metaplasierten Zellen 3–6 Stunden nach dem Befall. In den folgenden 24–48 Stunden entwickelten sich diese Zellen zu einem N?hrgewebe; somit erfolgte eine kompatible Reaktion. Im Gegensatz dazu zeigten die Zellen der Sorte Portugieser Weiβherbst eine hypersensitive Reaktion mit Akkumulation phenolischer Verbindungen. Zellen der Sorte Weiβe Amerikaner reagierten sowohl mit der Bildung von N?hrzellen als auch mit der Akkumulation phenolischer Verbindungen ausserhalb der N?hrzellen; dies ist ein Zeichen für Toleranz. Die Entwicklung typischer Gallen erfolgte in 21 Tagen ausschliesslich an den Bl?ttern der Sorte C-3309. An Portugieser Weiβherbst starben die Nymphen innerhalb von 3–4 Tagen ab, an Bl?ttern von Weiβe Amerikaner überlebten sie bis zum 21 Tag, ohne dass eine Gallbildung erfolgte. Die frühen subzellul?re Ver?nderungen der Blattgewebe bestimmten somit die Frasst?tigkeit der Nymphen und die Empfindlichkeit der drei Rebsorten auf den Insektenbefall.
  相似文献   

17.
Chinese wild grapes are almost exclusively dioecious and black-fruited, with rare reports of white and hermaphrodite types in V. davidii. To reveal the molecular mechanisms of these phenotypic variations, specific primers were designed to detect the genotypes of mybA-related genes in Vitis species, including the Chinese wild Vitis species, V. riparia, V. rupestris, cultivars of Vitis vinifera and its hybrids. We report here that three mybA-related genes, VvmybA1a, VvmybA2 and VvmybA3, were only detected in cultivars of V. vinifera and its hybrids, but not in V. riparia, V. rupestris or Chinese wild Vitis species, indicating that these genes could be used to test the genetic relationship to V. vinifera. On the other hand, the genes were not detected in the dioecious varieties of V. davidii, but were in the hermaphrodites. In particular, the white-fruited varieties were homozygous for VvmybA1a and showed a low expression of mybA-related genes and UFGT during the entire maturation period. Simple sequence repeat analysis showed that the hermaphrodite varieties of V. davidii, including the white-fruited varieties, were more closely related to V. vinifera cv. Pinot Noir and V. labruscana cv. Kyoho. These results suggested that the white-fruited and hermaphrodite varieties of V. davidii could be the result of its crossing with V. vinifera. It provides a new approach to identify truly Chinese wild varieties and to search for possible hybridization events.  相似文献   

18.
Grapevine is one of the most economically important crops in the world. Although long terminal repeat (LTR) retrotransposons are thought to have played an important role in plants, its distribution in grapevine is not clear. Here, we identified genome-wide intact LTR retrotransposons in a total of six high-quality grapevine genomes from Vitis vinifera L., Vitis sylvestris C.C. Gmel., Vitis riparia Michx. and Vitis amurensis Rupr. with an average of 2938 per genome. Among them, the Copia superfamily (particularly for Ale) is a major component of the LTR retrotransposon in grapevine. Insertion time and copy number analysis revealed that the expansion of 70% LTR retrotransposons concentrating on approximately 2.5 Ma was able to drive genome size variation. Phylogenetic tree and syntenic analyses showed that most LTR retrotransposons in these genomes formed and evolved after species divergence. Furthermore, the function and expression of genes inserted by LTR retrotransposons in V. vinifera (Pinot noir) and V. riparia were explored. The length and expression of genes related to starch metabolism and quinone synthesis pathway in Pinot noir and environmental adaptation pathway in V. riparia were significantly affected by LTR retrotransposon insertion. The results improve the understanding of LTR retrotransposons in grapevine genomes and provide insights for its potential contribution to grapevine trait evolution.  相似文献   

19.
The effects of nitrogen source on iron deficiency responses were investigated in two Vitis genotypes, one tolerant to limestone chlorosis Cabernet Sauvignon (Vitis vinifera cv.) and the other susceptible Gloire de Montpellier (Vitis riparia cv.). Plants were grown with or without Fe(III)-EDTA, and with NO3 alone or a mixture of NO3 and NH4+. Changes in pH of the nutrient solution and root ferric chelate reductase (FC-R) activity were monitored over one week. We carried out quantitative metabolic profiling (1H-NMR) and determined the activity of enzymes involved in organic acid metabolism in root tips. In iron free-solutions, with NO3 as the sole nitrogen source, the typical Fe-deficiency response reactions as acidification of the growth medium and enhanced FC-R activity in the roots were observed only in the tolerant genotype. Under the same nutritional conditions, organic acid accumulation (mainly citrate and malate) was found for both genotypes. In the presence of NH4+, the sensitive genotype displayed some decrease in pH of the growth medium and an increase in FC-R activity. For both genotypes, the presence of NH4+ ions decreased significantly the organic acid content of roots. Both Vitis genotypes were able to take up NH4+ from the nutrient solution, regardless of their sensitivity to iron deficiency. The presence of N-NH4+ modified typical Fe stress responses in tolerant and sensitive Vitis genotypes.  相似文献   

20.
We examined the influence of acarodomatia in the riverbank grape Vitis riparia Michaux (Vitaceae) on the distribution and abundance of predatory mites (Phytoseiidae) and their interactions with herbivorous mites. Acarodomatia are tufts of nonglandular trichomes or pits located in major leaf vein axes of many species of woody perennial plants and are often occupied by predatory and mycophagous mites. In common garden plantings of different accessions of V. riparia we found a significant positive relationship between size of domatia and the abundance of naturally occurring predatory mites. Behavior of adult predatory mites may explain this positive association, in part. In separate laboratory experiments, gravid females of Typhlodromus pyri Scheuten and Amblyseius andersoni Chant spent more time and deposited more eggs on half of a V. riparia leaf with accessible domatia versus the other half in which access to domatia was blocked with pruning tar. Domatia also had population consequences. In an outdoor experiment using potted grapevines, population size of T. pyri and A. andersoni mites was greater on V. riparia with open domatia compared to V. riparia in which domatia were blocked with pruning tar. Population size of predatory mites was also greater on V. riparia with domatia than on Vitis vinifera L., whether their axils were blocked or not. Since V. vinifera have very small domatia, these results indicate that the presence of domatia is important, not just access to vein axils. Elevated predatory mite populations in response to domatia, however, did not translate into differences in the abundance of European red mite Panonychus ulmi (Koch), an important pest of grapes.Overall, these results indicate that domatia in uncultivated V. riparia promote higher densities of some species of generalist phytoseiid mites. However, domatia are small in most cultivated grapes. We crossed females and males of V. riparia that varied in domatia size and reared their offspring and found that average domatia size in the parents was highly correlated (r2 = 0.77, slope = 0.55) with average domatia size in offspring (high narrow-sense heritability). Given that V. riparia possesses many other desirable agronomic traits, this result suggests it should be practical to breed for well-developed domatia in cultivated accessions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号