首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The reaction catalysed by phosphatidylcholine-sterol acyltransferase (EC 2.3.1.43) is believed to be the major source of cholesteryl ester in human plasma; the enzyme requires a protein activator. Several human apolipoproteins were found to exhibit an activator function, the major one being apolipoprotein A-I. Human apolipoprotein E exists in the population mainly in three different genetic isoforms; apolipoprotein E-2, E-3 and E-4. These isopeptides were isolated from subjects homozygous for one of the isoforms, incorporated into phospholipid/cholesterol/[14C]cholesterol complexes by the cholate dialysis procedure and used to measure capacity to activate phosphatidylcholine-sterol acyltransferase in comparison to apolipoprotein A-I lipid substrate particles prepared by the same procedure. Acyltransferase activity was measured by the formation of [14C]cholesteryl ester from [14C]cholesterol using purified enzyme. With egg yolk phosphatidylcholine as acyl donor, apo E was 15-19% as efficient as apolipoprotein A-I for activation of the acyltransferase. Apo-E-stimulated cholesteryl ester formation by the enzyme was enhanced when 1-oleoyl-2-palmitoyl-glycerophosphocholine was used as a substrate phospholipid (45% of apo A-I/phosphatidylcholine control) and most pronounced with dimyristoylglycerophosphocholine (75% of apo A-I/phosphatidylcholine control). No significant difference in activation was found between apo E isoforms. It is concluded that apolipoprotein E activates phosphatidylcholine-sterol acyltransferase in vitro and that apolipoprotein E isoforms are similarly effective.  相似文献   

2.
Various combinations of incorporation and addition of apolipoprotein A-I (apo A-I) and apolipoprotein A-II (apo A-II) individually or together to a defined lecithin-cholesterol (250/12.5 molar ratio) liposome prepared by the cholate dialysis procedure were used to study the effect of apo A-II on lecithin:cholesterol acyltransferase (LCAT, EC 2.3.1.43) activity of both purified enzyme preparations and plasma. When apo A-I (0.1-3.0 nmol/assay) alone was incorporated or added to the liposome, apo A-I effectively activated the enzyme. By contrast, when apo A-II (0.1-3.0 nmol/assay) alone was incorporated into or added to the liposome, apo A-II exhibited minimal activation of LCAT activity, approximately 1% of the activity obtained by an equal amount of apo A-I. Addition of apo A-II (0.1-3.0 nmol/assay) together with apo A-I (0.8 nmol/assay) to the liposome reduced the LCAT activity to approximately 30% of the level obtained with addition of apo A-I alone. On the other hand, addition of apo A-II (0.1-3.0 nmol/assay) or addition of lecithin-cholesterol liposome containing apo A-II (0.1-3.0 nmol/assay) to lecithin-cholesterol liposome containing apo A-I (0.8 nmol/assay) did not significantly alter apo A-I activation of LCAT activity. However, when the same amounts (0.1-3.0 nmol/assay) of apo A-II were incorporated together with apo A-I (0.8 nmol/assay) into the liposome, apo A-II significantly stimulated LCAT activity as compared to activity obtained with incorporation of apo A-I alone. The maximal stimulation was obtained with 0.4 nmol apo A-II/assay for both purified and plasma enzyme. At this apo A-II concentration, approximately 4-fold and 1.8-fold stimulation was observed for purified enzyme and plasma enzyme, respectively. These results indicated that apo A-II must be incorporated together with apo A-I into lecithin-cholesterol liposomes to exert its stimulatory effect on LCAT activity and that apo A-II in high-density lipoprotein may play an important role in the regulation of LCAT activity.  相似文献   

3.
Apolipoprotein A-I, the major structural polypeptide of human high-density lipoproteins, activates lecithin: cholesterol acyltransferase, the cholesterol ester-forming enzyme in plasma. Apolipoprotein A-I, like several other apolipoproteins, exhibits structural adaptability, which is manifest in a low free energy of stabilization and facile changes in secondary structure. We have investigated the dual effects of guanidinium chloride (GdmCl) and pressure perturbation at low GdmCl concentrations on apolipoproteins A-I conformational states, using fluorescence detection. Pressure alone (up to 3 kilobar) is insufficient to fully denature apolipoprotein A-I, and results in formation of metastable state(s). However, in conjunction with low concentrations of GdmCl the calculated volume change upon pressure denaturation increases from approx. -50 ml/mol to -90 ml/mol. The free energy of denaturation by pressure perturbation ranges from 1.4 to 1.8 kcal/mol, but the conformational states induced by pressure and GdmCl perturbation are most likely different. The physico-chemical properties of native and pressure-denatured conformational states can be, readily and reversibly, measured by fluorescence techniques. Biological activity of apolipoprotein A-I in the form of lecithin: cholesterol acyltransferase activation, is also reversible upon pressure perturbation. Samples of apolipoprotein A-I exposed to 2 kbar for an hour activated lecithin: cholesterol acyltransferase equally well as controls. To delineate more precisely the conformational states of apolipoprotein A-I under pressure, time-dependent anisotropy decay measurements, capable of resolving rotational heterogeneity, will be required.  相似文献   

4.
Rat plasma lecithin: cholesterol acyltransferase, a 68 kDa glycoprotein, has been purified 14 000-fold by a modification of a procedure used for the human enzyme. The activity of lecithin: cholesteryl acyltransferase in human and rat plasma are the same, although activation of both enzymes by human apolipoprotein A-I is greater than that produced by rat apolipoprotein A-I. Using reassembled high-density lipoproteins composed of human apolipoprotein A-I, phosphatidylcholine ethers and a series of different phosphatidylcholines, the separate effects of molecular species specificity and microenvironment on the rate of cholesteryl ester formation was determined. Substitution of a fluid lipid, 1-palmityl-2-oleyl-sn-glycero-3-phosphorylcholine, for a solid lipid, 1,2-dipalmityl-sn-glycero-3-phosphorylcholine, produced an 8-fold increase in the activity of all molecular species of phosphatidylcholine. With either solid or fluid lipid environments, the activity decreased as a function of increasing chain length of saturated acyl groups. Addition of one or more double bonds greatly increased the activity of a given saturated homologue. One major difference between the molecular specificity of rat and human lecithin: cholesteryl acyltransferase was that the latter had a two-fold preference for phosphatidylcholines containing arachidonate at the sn-2-position.  相似文献   

5.
Human plasma lecithin:cholesterol acyltransferase (LCAT, EC 2.3.1.43) has been purified more than 20,000 fold from plasma in 10% yield. This new procedure is composed of only four steps, including ultracentrifugation of plasma to yield a 1.21-1.25 kg/l density fraction, covalent binding of LCAT in this fraction to thiopropyl-Sepharose followed by adsorption of the enzyme to wheat-germ lectin-Sepharose for elimination of albumin and finally batch-wise treatment of the desorbed LCAT with hydroxyapatite to remove residual impurities. The purified enzyme was free of apolipoprotein A-I, A-II, B, C-I, C-II, C-III and E as checked by double immunodiffusion and SDS-electrophoresis, which latter method also demonstrated the absence of hitherto characterized lipid transfer proteins. Only traces of apolipoprotein D were present in the preparation as detected by immunoblotting. The purified enzyme retained alpha- and beta-LCAT activities. Non-denaturing and denaturing polyacrylamide gel electrophoresis yielded apparent molecular masses of 69 and 66 kDa, respectively, for the enzyme which on isoelectric focusing produced one major and one minor isoform with pI values of 4.20 and 4.25, respectively. Apolipoprotein A-I was required to transform artificial lecithin-cholesterol liposomes into substrates for the purified LCAT.  相似文献   

6.
Serum lecithin:cholesterol acyltransferase (LCAT) was estimated by enzymatically measuring the decrease in unesterified cholesterol after incubation of serum with liposomes. A high-performance liquid chromatography (HPLC) study showed the uptake of the lipids of liposomes by serum high density lipoprotein. Of all the examined liposomes prepared from cholesterol and various synthetic phosphatidylcholines, liposomes with dimyristoylphosphatidylcholine (DMPC) were found to be the most reactive in the LCAT reaction. When serum was used as an enzyme source, addition of purified apolipoprotein A-I, which is known to be an endogenous activator of LCAT, to the assay mixture resulted in a slight decrease in enzyme activity. Using DMPC-cholesterol liposomes as the substrate, the LCAT activities in 120 human sera showed a mean value of 485.4 +/- 64.6 nmol/hr per ml (mean +/- SD), which is 4.4- to 5.4-fold higher than the values obtained by self-substrate methods. LCAT activity was a linear function of the serum sample volume up to 670 nmol/hr per ml and coefficients of variation (CV) less than 4% were obtained under the standardized conditions. Moreover, when partially purified LCAT was added to various heat-inactivated sera, the activity was efficiently recovered. These results suggest that this method is sensitive, reproducible, and not greatly influenced by serum components.  相似文献   

7.
The human liver cell line HepG2 was investigated for its synthesis and secretion of lecithin-cholesterol acyltransferase. The cells were grown to confluency in Eagle's minimal essential medium plus 10% fetal bovine serum. At the onset of the study, fetal bovine serum was removed and cells were grown in minimal essential medium only. At 6, 12, 24, and 48 h the cells were harvested, and the culture medium collected at each time point was assayed for lecithin-cholesterol acyltransferase mass and activity, cholesterol esterification rate, and apolipoprotein A-I mass. The rate of the enzyme secretion measured by both mass and activity was linear over 24 h of culture. The enzyme mass by radioimmunoassay was 1.7, 4.1, 7.9 and 13.7 ng/ml culture medium (or 8.3, 19.9, 38.5 and 66.7 ng/mg cell protein), respectively, and enzyme activity using an exogenous source of phosphatidylcholine/cholesterol liposomes containing apolipoprotein A-I as substrate was 85, 170, 315, and 402 pmol cholesterol esterified/h per ml culture medium (or 414, 828, 1534 and 1957 pmol cholesterol esterified/h per mg cell protein) for 6, 12, 24, and 48 h of culture, respectively. The endogenous cholesterol esterification rate of the culture medium was 47, 104, 224 and 330 pmol/h per ml and apolipoprotein A-I mass was 305, 720, 2400 and 3940 ng/ml culture medium over the same time frame. In contrast to culture medium, low levels of enzyme activity (approximately 10% of that in culture medium at 24 and 48 h) were observed in the extracts of HepG2 cells. The enzyme secreted by HepG2 was found to be similarly activated by apolipoprotein A-I, apolipoprotein E, or apolipoprotein A-IV, and was similarly inhibited by phenylmethylsulfonyl fluoride, dithiobisnitrobenzoate, p-hydroxymercuribenzoate, or iodoacetate as compared to human plasma enzyme. High-performance gel filtration of the culture medium revealed that the HepG2-secreted enzyme was associated with a fraction having a mean apparent molecular weight of approximately 200,000. We concluded that human hepatoma HepG2 cells synthesize and secrete lecithin-cholesterol acyltransferase, which is functionally homologous to the human plasma enzyme.  相似文献   

8.
In a continued investigation of lecithin cholesterol acyltransferase reaction with micellar discoidal complexes of phosphatidylcholine, cholesterol, and various water soluble apolipoproteins, we prepared complexes containing human apo-E by the cholate dialysis method. These complexes were systematically compared to apo-A-I complexes synthesized under the same reaction conditions. Apo-E complexes (134 A in diameter) were slightly larger than apo-A-I complexes (110 A) but were very similar in terms of their protein and lipid content (2.4:0.10:1.0, egg phosphatidylcholine/cholesterol/apolipoprotein, w/w) and in the percentage of apolipoprotein in alpha-helical structure (72-74%). Concentration and temperature-dependence experiments on the velocity of the lecithin cholesterol acyltransferase reaction revealed differences in apparent Km values and small differences in apparent Vmax but very similar activation energies (18-20 kcal/mol). These observations suggest that differences in lecithin cholesterol acyltransferase activation by apo-A-I and apo-E are primarily a result of different affinities of the enzyme for the particles but that the rate-limiting step of the reaction is comparable for both complexes. Apo-E was found to be 18% as effective as apo-A-I in activating purified human lecithin cholesterol acyltransferase. Addition of free apo-A-I to apo-E complexes resulted in the exchange of bound for free apolipoprotein causing a slight increase in the reactivity with the enzyme when the incubation mixture was assayed. When the unbound apolipoproteins were removed by ultracentrifugation reisolated complexes containing both apo-E and apo-A-I demonstrated an even greater increase in reactivity with the enzyme.  相似文献   

9.
Incubation (24 h, 37 degrees C) of discoidal complexes of phosphatidylcholine and apolipoprotein A-I (molar ratio 95 +/- 10 egg yolk phosphatidylcholine-apolipoprotein A-I; 10.5 X 4.0 nm, long X short dimension; designated, class 3 complexes) with the ultracentrifugal d greater than 1.21 g/ml fraction transformed the discoidal complexes to a small product with apparent mean hydrated and nonhydrated diameter of 7.8 and 6.6 nm, respectively. Formation of the small product was associated with marked reduction in phosphatidylcholine-apolipoprotein AI molar ratio of the complexes (on average from 95:1 to 45:1). Phospholipase A2 activity of lecithin:cholesterol acyltransferase participated in the depletion process, as evidenced by production of unesterified fatty acids. In the presence of the d greater than 1.21 g/ml fraction or partially purified lecithin:cholesterol acyltransferase and a source of unesterified cholesterol, the small product could be transformed to a core-containing (cholesteryl ester) round product with a hydrated and nonhydrated diameter of 8.6 and 7.5 nm, respectively. By means of cross-linking with dimethylsuberimidate, the protein moiety of the small product was shown to contain primarily two apolipoprotein A-I molecules per particle, while the large product contained three apolipoprotein A-I molecules per particle. The increase in number of apolipoprotein A-I molecules per particle during transformation of the small to the large product appeared to result from fusion of the small particles during core build-up and release of excess apolipoprotein A-I from the fusion product. The results obtained with the model complexes were consistent for the most part with recent observations (Chen, C., Applegate, K., King, W.C., Glomset, J.A., Norum, K.R. and Gjone, E. (1984) J. Lipid Res. 25, 269-282) on the transformation, by lecithin:cholesterol acyltransferase, of the small spherical high-density lipoproteins of patients with familial lecithin:cholesterol acyltransferase deficiency.  相似文献   

10.
The distribution of human apolipoprotein A-IV was studied in sera from normolipidemic fasting subjects by high performance gel filtration on a Superose 12 HR column. The major part of apolipoprotein A-IV eluted in the range of the apolipoprotein A-I peak, and distributed mainly in the large-size high density lipoprotein subfractions. Only a small peak or a shoulder on the main fraction appeared in the elution volume of free apolipoprotein A-IV. To investigate the relation of apolipoprotein A-IV with high density lipoprotein particles, serum high density lipoproteins were precipitated by incubating human serum with anti-apolipoprotein A-I immunoglobulins. At optimal concentrations, inducing a precipitation of 90 to 95% of serum apolipoprotein A-I, about 70% of serum apolipoprotein A-IV was precipitated. It was concluded that, in fasting human serum, apolipoprotein A-IV was mainly associated with high density lipoprotein particles. This high degree of association to high density lipoproteins did not result from the known in vitro redistribution of apolipoprotein A-IV induced by lecithin: cholesterol acyltransferase activity since it was observed in sera in the presence of inhibitors of this enzyme. The comparison of gel filtration profiles of total serum and of serum fractions separated by ultracentrifugation showed that the apolipoprotein A-IV-high density lipoprotein association was a weak one, easily dissociated by the ultracentrifugation process. The existence in fasting human serum of a predominant high density lipoprotein-associated form of apolipoprotein A-IV should stimulate more studies of the general function and metabolism of this protein.  相似文献   

11.
Micellar, discoidal complexes were prepared from L-alpha-dipalmitoylphosphatidylcholine (DPPC) or egg phosphatidylcholine (egg-PC), cholesterol, and human apolipoprotein A-I by the cholate dialysis method. Reaction mixtures containing from 70:7:1 to 500:50:1, PC/cholesterol/apolipoprotein A-I (mol/mol) were fractionated by gel-filtration into various complex fractions. The isolated DPPC complexes ranged in size from 103 to 380 A in diameter, and in composition from 70:7:1 to 470:45:1, PC/cholesterol/apolipoprotein A-I (mol/mol), respectively. In contrast, the isolated egg-PC complexes only ranged in size from 105 to 214 A in diameter, and in composition from 65:5:1 to 153:17:1, PC/cholesterol/apolipoprotein A-I (mol/mol), respectively. Measurements of fluorescence wavelength maxima and fluorescence polarization of tryptophan residues of apolipoprotein A-I, in both series of complexes, revealed uniform spectral properties for all the egg-PC containing complexes. The DPPC complexes, on the other hand, had maxima in the fluorescence parameters for complexes with diameters around 200 A. When reacted with purified human lecithin:cholesterol acyltransferase, either at constant apolipoprotein A-I or at constant lipid concentration, all egg-PC complexes had very similar reaction rates, but the DPPC complex series exhibited major differences in reactivity. Minima in reaction rates occurred for DPPC complexes around 200 A in diameter, and optimal rates were observed with the small discoidal complexes (110 A in diameter). These reaction rates correlate well with the apolipoprotein A-I fluorescence properties and indicate that the apolipoprotein structure, reflected at the interface with phosphatidylcholine, may be the most important factor in determining complex reactivity with lecithin:cholesterol acyltransferase.  相似文献   

12.
Lecithin-cholesterol acyltransferase mass levels and activity and apolipoproteins A-I, A-II, B and D were measured in a Japanese family who have a familial lecithin-cholesterol acyltransferase deficiency. This analysis was performed to gain insight into the molecular basis of the enzyme deficiency and to compare findings in this family with other families with familial lecithin-cholesterol acyltransferase deficiency. The mass of the enzyme in plasma was determined by a sensitive double antibody radioimmunoassay, and enzyme activity was measured by using a common synthetic substrate comprised of phosphatidylcholine, cholesterol and apolipoprotein A-I liposomes prepared by a cholate dialysis procedure. The lecithin-cholesterol acyltransferase-deficient subject had an enzyme mass level that was 35% of normal (2.04 micrograms/ml, as compared with an average normal level of 5.76 +/- 0.95 micrograms/ml in 19 Japanese subjects) and an enzyme activity of less than 0.1% of normal (0.07 nmol/h per ml, as compared with normal levels of 100 nmol/h per ml). This subject also had lower levels of apolipoproteins: apolipoprotein A-I was 53 mg/dl (42% of normal), apolipoprotein A-II was 10.6 mg/dl (31% of normal), apolipoprotein B was 68 mg/dl (68% of normal), and apolipoprotein D was 3.6 mg/dl (60% of normal). The three obligate heterozygotes had enzyme mass levels ranging from 65% to 100% of normal and enzyme activity levels ranging from 23% to 65% of normal (23.4, 56.8, and 64.7 nmol/h per ml, respectively). The proband's sister had an enzyme mass level of 6.55 micrograms/ml (114% of normal) and an enzyme activity of only 64.8 nmol/h per ml (65% of normal), suggesting that she was also a heterozygote for lecithin-cholesterol acyltransferase deficiency. The obligate heterozygotes and the sister had normal apolipoprotein levels. We conclude that the lecithin-cholesterol acyltransferase deficiency in this family is due to the production of a defective enzyme that is expressed in the homozygote as well as in the heterozygotes, and, further, that this family's mutation differs from that reported earlier for other Japanese lecithin-cholesterol acyltransferase-deficient families.  相似文献   

13.
A method for isolating human plasma lecithin:cholesterol acyltransferase (EC 2.3.1.43) purified more than 50 000-fold is described. The crude enzyme obtained by initial ammonium sulfate and citric acid treatment of 21 of human plasma is subjected to repeated DEAE-cellulose chromatography to yield a preparation purified more than 600-fold. Hydroxyapatite chromatography of concentrates from this fraction using 0.5 mM phosphate buffer, pH 6.8, yields enzyme preparations purified more than 50 000-fold. The enzyme isolated by this procedure was free of apolipoprotein D, as shown by the absence of an arc in immunodiffusion with anti-apolipoprotein D. The enzyme showed a single band by polyacrylamide gel electrophoresis in the presence and absence of SDS. Upon analytical isoelectrofocusing the enzyme separated into three iso forms with isoelectric points below that of egg albumin (pI 4.6). The enzyme was characterized by a high content of glutamic acid, leucine and glycine, and a lower content of tyrosine. The enzyme possessed both transferase and phospholipase A2 activities and both activities show absolute requirement for apolipoprotein A-I. The purified enzyme was injected into Balb/c mice and the antiserum reacted both with the purified enzyme and normal human serum in immunodiffusion, giving lines of complete identity. The antiserum gave no precipitation lines with albumin or apolipoprotein D, providing additional evidence for the absence of apolipoprotein D in the purified enzyme. The gamma-globulin isolated from the antiserum inhibited human lecithin:cholesterol acyltransferase activity.  相似文献   

14.
We examined the effects of apolipoproteins A-IV and A-I on the catabolism of whole particles by hepatoma G2 cells and cultured primary hepatocytes. For this type of experiment, high density lipoprotein is unsuitable, because all of its lipid and protein components independently dissociate and exchange and hence poorly trace whole particle catabolism. We therefore used phosphatidylcholine liposomes with radioactive tracers entrapped within their aqueous cores. Apolipoproteins A-IV, A-I, or E added to liposomes became liposome-associated and produced no detectable release of encapsulated label. As a positive control, apolipoprotein E doubled the uptake of labeled liposomes by hepatoma cells, compared to apolipoprotein-free controls, and this increase could be blocked by the addition of excess unlabeled low density lipoprotein. Degradation of labeled liposomes by hepatoma cells was increased 6-fold by the addition of apolipoprotein E. In contrast, neither apolipoprotein A-IV nor A-I increased cellular uptake or degradation of the particles. Similar results were obtained with primary hepatocytes. In studies using apolipoprotein combinations, apolipoproteins A-IV and A-I were each able to displace apolipoprotein E from liposomes and thereby reduce cellular uptake. Our data indicate that apolipoproteins A-IV and A-I do not facilitate uptake or degradation of whole particles by liver-derived cells in vitro. However, these apolipoproteins may modulate receptor-mediated uptake of particles by reducing the amount of particle-bound apolipoprotein E.  相似文献   

15.
Human plasma apoproteins (apo) A-I and A-IV both activate the enzyme lecithin:cholesterol acyltransferase (EC 2.3.1.43). Lecithin:cholesterol acyltransferase activity was measured by the conversion of [4-14C] cholesterol to [4-14C]cholesteryl ester using artificial phospholipid/cholesterol/[4-14C]cholesterol/apoprotein substrates. The substrate was prepared by the addition of apoprotein to a sonicated aqueous dispersion of phospholipid/cholesterol/[4-14C]cholesterol. The activation of lecithin:cholesterol acyltransferase by apo-A-I and -A-IV differed, depending upon the nature of the hydrocarbon chains of the sn-L-alpha-phosphatidylcholine acyl donor. Apo-A-I was a more potent activator than apo-A-IV with egg yolk lecithin, L-alpha-dioleoylphosphatidylcholine, and L-alpha-phosphatidylcholine substituted with one saturated and one unsaturated fatty acid regardless of the substitution position. When L-alpha-phosphatidylcholine esterified with two saturated fatty acids was used as acyl donor, apo-A-IV was more active than apo-A-I in stimulating the lecithin:cholesterol acyltransferase reaction. Complexes of phosphatidylcholines substituted with two saturated fatty acids served as substrate for lecithin:cholesterol acyltransferase even in the absence of any activator protein. Essentially the same results were obtained when substrate complexes (phospholipid-cholesterol-[4-14C]cholesterol-apoprotein) were prepared by a detergent dialysis procedure. Apo-A-IV-L-alpha-dimyristoylphosphatidylcholine complexes thus prepared were shown to be homogeneous particles by column chromatography and density gradient ultracentrifugation. It is concluded that apo-A-IV is able to facilitate the lecithin:cholesterol acyltransferase reaction in vitro.  相似文献   

16.
Isolation and properties of porcine lecithin:cholesterol acyltransferase   总被引:2,自引:0,他引:2  
Lecithin: cholesterol acyltransferase (LCAT, phosphatidylcholine: sterol O-acyltransferase, EC 2.3.1.43) was purified approximately 20 000-fold from pig plasma by ultracentrifugation, phenyl-Sepharose and hydroxyapatite chromatography. Purified LCAT had an apparent relative molecular mass of 69 000 +/- 2000. By isoelectrofocusing it separated into five or six bands with pI values ranging from pH 4.9 to 5.2. The amino acid composition was similar to that of the human enzyme. An antibody against pig LCAT was prepared in goat. The antibody reacted against pig LCAT and gave a reaction of partial identity with human LCAT. Incubation of pig plasma or purified enzyme with the antibody virtually inhibited LCAT activity. The same amount of antibody inactivated only 62% of the LCAT activity in human serum. Pig and human LCAT were activated to the same extent by either human or pig apolipoprotein A-I (apo-A-I) using small liposomes as substrate. Human apoA-I, however, caused a higher esterification rate for both enzymes. Using apoA-I and small liposomes as a substrate, the addition of apoC-II up to 4 micrograms/ml had no effect on the LCAT reaction, but above this concentration LCAT was inhibited. Small liposomes with phosphatidylcholine/cholesterol molar ratios of 3:1 up to 8.4:1 did not show any significant differences in the LCAT reaction, when used as substrates in the presence of various amounts of apoA-I and albumin. In contrast, the LCAT activity was significantly reduced by liposomes with phosphatidylcholine/cholesterol molar ratios below 3:1.  相似文献   

17.
Complexes of egg yolk phosphatidylcholine and apolipoprotein A-I were prepared by a detergent (sodium cholate)-dialysis method and characterized by gradient gel electrophoresis, gel filtration, electron microscopy and chemical analysis. Multicomponent electrophoretic patterns were obtained indicating formation of at least eight classes of discoidal complexes. The relative contribution of the different classes to the electrophoretic pattern was a function of the molar ratio of phosphatidylcholine:apolipoprotein A-I in the interaction mixture. Molar ratios of phosphatidylcholine:apolipoprotein A-I in isolated complexes were strongly and positively correlated with disc diameter obtained by electron microscopy. Incorporation of unesterified cholesterol into phosphatidylcholine/apolipoprotein A-I interaction mixtures also resulted in formation of unique complexes but with considerably different particle size distributions relative to those observed in the absence of cholesterol. One common consequence of cholesterol incorporation into interaction mixtures of 87.5:1 and 150:1 molar ratio of phosphatidylcholine:apolipoprotein A-I was the disappearance of a major complex class with diameter of 10.8 nm and the appearance of a major component with diameter of approximately 8.8 nm. Electrophoretic patterns of cholesterol-containing complexes showed a strong similarity to patterns recently published for high density lipoproteins from plasma of lecithin:cholesterol acyltransferase-deficient subjects, suggesting that the complexes formed in vitro by the detergent-dialysis method may serve as appropriate models for investigation of the origins of the HDL particle size distribution.  相似文献   

18.
Cholesterol efflux was studied in a model system in culture using apolipoproteins and phospholipids added in the form of liposomes at concentrations expected to be present in the extracellular fluid. Fibroblasts were seeded in medium containing [3H]cholesterol-labeled serum, grown till confluent, and the [3H]cholesterol efflux was studied in serum-free medium. Addition of delipidated HDL apolipoprotein resulted in a very low release of [3H]cholesterol, which did not increase with time of exposure or concentration of apolipoproteins. Addition of increasing amounts of HDL apolipoprotein to liposomes prepared from either dioleoylphosphatidylcholine (PC) or its nonhydrolysable ether analog, dioleylphosphatidylcholine (DOEPC) resulted in a 3-5-fold increase of [3H]cholesterol efflux, over that achieved with liposomes alone. This model system permitted the test of the putative role of apolipoprotein A-IV in cholesterol removal from cells. The ability of apolipoprotein A-IV to enhance [3H]cholesterol efflux from cells by DOEPC liposomes was compared to that of apolipoproteins A-I, E and C, which were added at equimolar concentrations. At nM concentrations, apolipoproteins A-IV, A-I and E were equally able to enhance cholesterol efflux, while C apolipoproteins were less effective at these low concentrations. Mixtures prepared from apolipoprotein A-IV, A-I and E and PC or DOEPC liposomes were equally effective in cholesterol removal, while phosphatidylethanolamine liposome apolipoprotein mixtures had a much lower capacity. The present study provides the first evidence that apolipoprotein A-IV can play a role in reverse cholesterol transport as was suggested on the basis of high concentrations of this apolipoprotein in nonlipoprotein form in plasma and extracellular fluid. The efficacy of DOEPC liposomes to serve as cholesterol acceptors might be of potential value for enhancement of reverse cholesterol transport in vivo.  相似文献   

19.
Incubation studies were performed on plasma obtained from subjects selected for relatively low levels of high-density lipoprotein cholesterol (HDL-C) (no greater than 30 mg/dl) and particle size distributions enriched in the HDL3 subclass. Incubation (12 h, 37 degrees C) of plasma in the presence or absence of lecithin: cholesterol acyltransferase activity produces marked alteration in size profiles of both major apolipoprotein-specific HDL3 populations (HDL3(AI w AII), HDL3 species containing both apolipoprotein A-I and apolipoprotein A-II, and HDL3(AI w/o AII), HDL3 species containing apolipoprotein A-I) as isolated by immunoaffinity chromatography. In the presence or absence of lecithin: cholesterol acyltransferase activity, plasma incubation results in a shift of HDL3(AI w AII) species (initial mean sizes of major components, approx. 8.8 and 8.0 nm) predominantly to larger particles (mean size, 9.8 nm). A less prominent shift to smaller particles (mean size, 7.8 nm) accompanies the conversion to larger particles only when the enzyme is active. Combined shifts to larger (mean size, 9.8 nm) and smaller (mean size, 7.4 nm) particles are observed for HDL3(AI w/o AII) particles (mean size, 8.3 nm) also only in the presence of enzyme activity. However, in the absence of enzyme activity, HDL3(AI w/o AII) species, unlike the HDL3(AI w AII) species, are converted to smaller (mean size 7.4 nm) rather than to larger particles. Like native HDL2b(AI w/o AII) particles, the larger HDL3(AI w/o AII) conversion products exhibit a protein moiety with molecular weight equivalent to four apolipoprotein A-I molecules per particle; small HDL3(AI w/o AII) products are comprised predominantly of particles with two apolipoprotein A-I per particle. Incubation-induced conversion of HDL3 particles in the presence of lecithin: cholesterol acyltransferase activity is associated with increased binding of both apolipoprotein-specific HDL populations to low-density lipoproteins (LDL). The present studies indicate that, in the absence of lecithin: cholesterol acyltransferase activity, the two HDL3 populations follow different conversion pathways, possibly due to apolipoprotein-specific activities of lipid transfer protein or conversion protein in plasma. Our studies also suggest that lecithin: cholesterol acyltransferase activity may play a role in the origins of large HDL2b(AI w/o AII) species in human plasma by participating in the conversion of HDL3(AI w/o AII) particles, initially with three apolipoprotein A-I, to larger particles with four apolipoprotein A-I per particle.  相似文献   

20.
A purification method for apolipoprotein A-I and A-II   总被引:1,自引:0,他引:1  
Apolipoproteins A-I and A-II were isolated from precipitates obtained by cold ethanol fractionation of human plasma. The starting material used in this report was precipitate B of the Kistler and Nitschmann method which corresponds approximately to fraction III of the Cohn and Oncley procedure. Through the use of urea, chloroform, and ethanol in appropriate concentrations, apolipoproteins A-I and A-II were isolated by a simple extraction technique avoiding time-consuming ultracentrifugation. Starting from 10 g of centrifuged precipitate B, approximately 100 mg of apolipoprotein A-I and 10 mg of apolipoprotein A-II were obtained. When incubated with normal human or rabbit plasma, both apolipoproteins were readily incorporated into high-density lipoproteins. Apolipoprotein A-I obtained by the cold ethanol method activated lecithin-cholesterol acyltransferase to the same extent as apolipoprotein A-I prepared by the classical flotation method. Apolipoprotein A-II had no such properties by itself, but was capable of potentiating lecithin-cholesterol acyltransferase activity of apolipoprotein A-I.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号