首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Nitrate and nitrite concentrations in the water and nitrous oxide and nitrite fluxes across the sediment-water interface were measured monthly in the River Colne estuary, England, from December 1996 to March 1998. Water column concentrations of N2O in the Colne were supersaturated with respect to air, indicating that the estuary was a source of N2O for the atmosphere. At the freshwater end of the estuary, nitrous oxide effluxes from the sediment were closely correlated with the nitrite concentrations in the overlying water and with the nitrite influx into the sediment. Increases in N2O production from sediments were about 10 times greater with the addition of nitrite than with the addition of nitrate. Rates of denitrification were stimulated to a larger extent by enhanced nitrite than by nitrate concentrations. At 550 μM nitrite or nitrate (the highest concentration used), the rates of denitrification were 600 μmol N · m−2 · h−1 with nitrite but only 180 μmol N · m−2 · h−1 with nitrate. The ratios of rates of nitrous oxide production and denitrification (N2O/N2 × 100) were significantly higher with the addition of nitrite (7 to 13% of denitrification) than with nitrate (2 to 4% of denitrification). The results suggested that in addition to anaerobic bacteria, which possess the complete denitrification pathway for N2 formation in the estuarine sediments, there may be two other groups of bacteria: nitrite denitrifiers, which reduce nitrite to N2 via N2O, and obligate nitrite-denitrifying bacteria, which reduce nitrite to N2O as the end product. Consideration of free-energy changes during N2O formation led to the conclusion that N2O formation using nitrite as the electron acceptor is favored in the Colne estuary and may be a critical factor regulating the formation of N2O in high-nutrient-load estuaries.  相似文献   

2.
Characteristics of dissimilatory nitrate reduction by Propionibacterium acidi-propionici, P. freudenreichii, P. jensenii, P. shermanii and P. thoenii were studied. All strains reduced nitrate to nitrite and further to N2O. Recovery of added nitrite-N as N2O-N approached 100%, so that no other end product existed in a significant quantity. Specific rates of N2O production were 3 to 6 orders of magnitude lower than specific rates of N2 production by common denitrifiers. Oxygen but not acetylene inhibited N2O production in P. acidi-propionici and P. thoenii. Nitrite reduction rates were generally higher than nitrate reduction rates. The enzymes involved in nitrate and nitrite reduction were either constitutive or derepressed by anacrobiosis. Nitrate stimulated synthesis of nitrate reductase in P. acidi-propionici. Specific growth rates and growth yields were increased by nitrate. At 10 mM, nitrite was toxic to all strains, and at 1 mM its effect ranged from none to total inhibition. No distinction was obvious between incomplete forms of denitrification and dissimilatory nitrate reduction to ammonia. N2O production from nitrite by propionibacteria may represent a detoxication mechanism rather than a part of an energy transformation system.  相似文献   

3.
Peatlands cover more than 30% of the Finnish land area and impact N2O fluxes. Denitrifiers release N2O as an intermediate or end product. In situ N2O emissions of a near pH neutral pristine fen soil in Finnish Lapland were marginal during gas chamber measurements. However, nitrate and ammonium fertilization significantly stimulated in situ N2O emissions. Stimulation with nitrate was stronger than with ammonium. N2O was produced and subsequently consumed in gas chambers. In unsupplemented anoxic microcosms, fen soil produced N2O only when acetylene was added to block nitrous oxide reductase, suggesting complete denitrification. Nitrate and nitrite stimulated denitrification in fen soil, and maximal reaction velocities (vmax) of nitrate or nitrite dependent denitrification where 18 and 52 nmol N2O h-1 gDW -1, respectively. N2O was below 30% of total produced N gases in fen soil when concentrations of nitrate and nitrite were <500 μM. vmax for N2O consumption was up to 36 nmol N2O h-1 gDW -1. Denitrifier diversity was assessed by analyses of narG, nirK/nirS, and nosZ (encoding nitrate-, nitrite-, and nitrous oxide reductases, respectively) by barcoded amplicon pyrosequencing. Analyses of ~14,000 quality filtered sequences indicated up to 25 species-level operational taxonomic units (OTUs), and up to 359 OTUs at 97% sequence similarity, suggesting diverse denitrifiers. Phylogenetic analyses revealed clusters distantly related to publicly available sequences, suggesting hitherto unknown denitrifiers. Representatives of species-level OTUs were affiliated with sequences of unknown soil bacteria and Actinobacterial, Alpha-, Beta-, Gamma-, and Delta-Proteobacterial sequences. Comparison of the 4 gene markers at 97% similarity indicated a higher diversity of narG than for the other gene markers based on Shannon indices and observed number of OTUs. The collective data indicate (i) a high denitrification and N2O consumption potential, and (ii) a highly diverse, nitrate limited denitrifier community associated with potential N2O fluxes in a pH-neutral fen soil.  相似文献   

4.
《BBA》1986,848(1):1-7
An almost stoichiometric conversion of nitrite to nitrous oxide was observed during the nitrite reduction by Paracoccus denitrificans cells in a medium of pH 6.4. The N2O accumulated in the reaction medium and was decomposed only after nitrite had been consumed; when the pH of the medium was higher than 7.3–7.4, nitrous oxide did not accumulate. The activity of N2O reductase was, in the whole range of pH 6.4–9.2, higher than the activity of NO2 reductase, both activities showing the maximum at the pH higher than 8.0. Using an artificial donor, TMPD plus ascorbate, the maximum activity of NO2 reductase, but not N2O reductase was shifted by about two pH units to acidic region. The activity of nitrite reductase declined in the presence of N2O only at higher pH values. Cytochrome c, as a common electron donor for both N2O and NO2 reductase, was more oxidized at pH < 7.3 in the presence of NO2 than in the presence of N2O, the opposite being true at pH > 7.3. The increased flux of electrons to cytochrome c has for a constant pH value (6.4) no effect on their distribution over NO2 and N2O. The results indicate that the distribution of electrons in the terminal part is determined by the different pH optima for NO2 reductase and N2O reductase, and by a mutual dependence of activities of the two reductases due to the competition for redox equivalents from a substrate.  相似文献   

5.
The presence of nitrite during denitrification is generally related to N2O emissions. The aim of this work was to determine the operational conditions that have influences in the specific denitrifying activities (SDA) and N2O production. Two factorial experimental designs (23 and 22) were performed to evaluate the effects of four operational variables (pH; biomass concentration; nitrite concentration and C/N ratio) on the SDA. Batch experiments were carried out with two different carbon sources: acetate and swine wastewater. Results showed that both biomass and NO2? concentrations had a significant effect on the SDA in the presence of acetate, in the case of swine slurry, pH also affected the SDA. N2O production was only detected when swine wastewater was used and its specific production rate increased with the increase of the SDA. This result would indicate that N2O emissions are also promoted when swine wastewater is treated in conditions that favor the SDA.  相似文献   

6.
A mixed beech and spruce forest soil was incubated under potential denitrification assay (PDA) condition with 10% acetylene (C2H2) in the headspace of soil slurry bottles. Nitrous oxide (N2O) concentration in the headspace, as well as nitrate, nitrite and ammonium concentrations in the soil slurries were monitored during the incubation. Results show that nitrate disappearance rate was higher than N2O production rate with C2H2 blockage during the incubation. Sum of nitrate, nitrite, and N2O with C2H2 blockage could not recover the original soil nitrate content, showing an N imbalance in such a closed incubation system. Changes in nitrite and ammonium concentration during the incubation could not account for the observed faster nitrate disappearance rate and the N imbalance. Non-determined nitric oxide (NO) and N2 production could be the major cause, and the associated mechanisms could vary for different treatments. Commonly applied PDA measurement likely underestimates the nitrate removal capacity of a system. Incubation time and organic matter/nitrate ratio are the most critical factors to consider using C2H2 inhibition technique to quantify denitrification. By comparing the treatments with and without an antibiotic, the results suggest that microbial N uptake probably played a minor role in N balance, and other denitrifying enzymes but nitrate reductase could be substantially synthesized during the incubation.  相似文献   

7.
The effect of nitrate and ammonium application (0, 50, 100 and 150 mg N kg-1 soil) was studied in an incubation experiment. Four Belgian soils, selected for different soil characteristics, were used. The application of both nitrate and ammonium caused an increase of the NO and N2O emission. The NO production from nitrate and ammonium was found to be of the same order of magnitude. At low pH the NO production was found to be highest from nitrate, at higher pH values the production was found to be higher from ammonium. This seems to be the result of the negative effect of low pH on nitrification.The ANOVA analysis was carried out to separate the effect of the form of nitrogen, quantily of N applied and soil characteristics. The total production of NO was found to depend for 97% on the soil characteristics and for 3% on the quantity of N added. The total N2O production depended for 100% on the soil characteristics.Stepwise regression analysis showed that the total NO production was best predicted by a combination of the factors CaCO3 content and NH4 + concentration in the soil. Total N2O production was best described by a combination of CaCO3, water soluble carbon (WSC) and sand-content.The N2O/NO ratio was found to be highly variable, indicating that their productions react differently to changes in conditions, or are partly independent.It may be concluded that to NO and N2O from soils both nitrification and denitrification may be equally important, their relative importance depending on local conditions such as substrate availability, water content of the soil etc. However, the NO production seems to be more nitrification dependent than the N2O production. ei]{gnE}{fnMerckx}{edSection editor}  相似文献   

8.
Nitrate, nitrite and nitrous oxide were denitrified to N2 gas by washed cells ofRhizobium japonicum CC706 as well as by bacteroids prepared from root nodules ofGlycine max (L.) Merr. (CV. Clark 63). Radiolabelled N2 was produced from either K15NO3 or Na15NO2 by washed cells ofRh. japonicum CC705 grown with either nitrate only (5 mM) or nitrate (5 mM) plus glutamate (10 mM). Nitrogen gas was also produced from N2O. Similar results were obtained with bacteroids ofG. max. The stoichiometry for the utilization of15NO 3 - or15NO 2 - and the produciton of15N2 was 2:1 and for N2O utilization and N2 production it was 1:1. Some of the15N2 gas produced by denitrification of15NO 3 - in bacteroids was recycled via nitrogenase into cell nitrogen.  相似文献   

9.
Some recent studies on the pathway of nitrogen and the reductases of denitrification are reviewed. The available evidence suggests that while the intermediates of denitrification can remain enzyme-bound (presumably to nitrite reductase) prior to formation of N2O, NO and nitroxyl (HNO) can be released in part by certain bacteria. Release of NO is recognized by a nitrite/NO?15N exchange reaction and isotopic scrambling in product N2O; release of nitroxyl by Pseudomonas stutzeri is recognized by isotopic scrambling of nitrite and NO in product N2O in absence of exchange and affords evidence that the first N?N bond forms in denitrification at the N1+ redox level. The recent purification and partial characterization of nitrous oxide reductase are described. The ability of the dissimilatory nitrite reductase to activate nitrite for nitrosyl transfer affords a new chemical probe into the mechanism of action of this central enzyme. It would appear that reduction of nitrite is subject to electrophilic catalysis. 18O studies show that dissociation of nitrite from nitrite reductase can be slow relative to competing reduction or nitrosyl transfer.  相似文献   

10.
The aim of this study was to evaluate the capacity of a denitrifying consortium to achieve the simultaneous removal of nitrate, sulfide and p-cresol and elucidate the rate-limiting steps in the mixotrophic process. Nitrite reduction appeared as the most evident rate-limiting step in the denitrifying respiratory process. The nitrite reduction rate achieved was up to 57 times lower than the nitrate reduction rate during the simultaneous removal of sulfide and p-cresol. Negligible accumulation of N2O occurred in the denitrifying cultures corroborating that nitrite reduction was the main rate-limiting step of the respiratory process. A synergistic effect of nitrate and sulfide is proposed to explain the accumulation of nitrite. The study also points at the oxidation of S0 as another rate-limiting step in the denitrifying process. Different respiratory rates were achieved with the distinct electron donors provided (p-cresol and sulfide). The oxidation rate of p-cresol (qCRES) was generally higher (up to 2.6-fold in terms of reducing equivalents) than the sulfide oxidation rate (qS2−), except for the experiments performed at 100 mg S2− L−1 in which qS2− was slightly (~1.4-fold in terms of reducing equivalents) higher than qCRES. The present study provides kinetic information, which should be considered when designing and operating denitrifying reactors to treat industrial wastewaters containing large amounts of sulfurous, nitrogenous and phenolic contaminants such as those generated from petrochemical refineries.  相似文献   

11.
Denitrification causes important losses of N-fertilizer in rice-fields, where high temperature and high production of organic matter favour denitrification losses. Two techniques have been used to quantify the denitrification losses: the 15N technique, which can be used to quantify the amount finally incorporated, and the acetylyne inhibition technique which is a direct measure of the quantities lost.Both techniques were applied in enclosures (diameter = 44 cm) in the field while moreover bio-assays in 3 l glass beakers were carried out. In all experiments where nitrate was added we found a rapid decrease of nitrate; usually about 30–50% of the nitrate that disappeared was recovered as N2O. As in one experiment, in which we measured the N2O disappearance rate as well, the N2O itself decreased at a rather constant rate of 20% per day, a correction must be made for this N2O decrease in the calculations of the nitrate disappearance rate. Although we have only one series in which the decrease of N2O was measured, the mathematical analysis indicates that as much as 80% of the N-fertilizer is actually lost. This figure is in full agreement with the 15N experiments; if the 15N was applied early only about 7% was recovered in soil and plants, while if it was applied later (after 7 weeks) about 20% was incorporated.Denitrification rate could be fitted on an negative exponential regression line; the rate constant increased during the summer. It is suggested that organic matter caused this increase.During denitrification considerable quantities of nitrite appear, which later on disappear again by processes still unknown; the nature of the available organic matter may be important for this nitrite production.With N-serve we tried to inhibit NH3 oxidation. In this way we tried to prevent the considerable N losses and to demonstrate that the nitrite produced in our experiments was not derived from NH3 oxidation. N-serve, however, had very little influence. It is probably inactivated by absorption onto the sediments.From these results it is suggested that the efficiency of N-application may be considerably increased by using low doses of N-fertilizer, but applied late in the growing season, e.g. 7 weeks after sowing. This favours environmental protection as well.  相似文献   

12.
Biogenic emissions of nitric and nitrous oxides have important impacts on the photochemistry and chemistry of the atmosphere. Although biogenic production appears to be the overwhelming source of N2O, the magnitude of the biogenic emission of NO is very uncertain. In soils, possible sources of NO and N2O include nitrification by autotrophic and heterotrophic nitrifiers, denitrification by nitrifiers and denitrifiers, nitrate respiration by fermenters, and chemodenitrification. The availability of oxygen determines to a large extent the relative activities of these various groups of organisms. To better understand this influence, we investigated the effect of the partial pressure of oxygen (pO2) on the production of NO and N2O by a wide variety of common soil nitrifying, denitrifying, and nitrate-respiring bacteria under laboratory conditions. The production of NO per cell was highest by autotrophic nitrifiers and was independent of pO2 in the range tested (0.5 to 10%), whereas N2O production was inversely proportional to pO2. Nitrous oxide production was highest in the denitrifier Pseudomonas fluorescens, but only under anaerobic conditions. The molar ratio of NO/N2O produced was usually greater than unity for nitrifiers and much less than unity for denitrifiers. Chemodenitrification was the major source of both the NO and N2O produced by the nitrate respirer Serratia marcescens. Chemodenitrification was also a possible source of NO and N2O in nitrifier cultures but only when high concentrations of nitrite had accumulated or were added to the medium. Although most of the denitrifiers produced NO and N2O only under anaerobic conditions, chemostat cultures of Alcaligenes faecalis continued to emit these gases even when the cultures were sparged with air. Based upon these results, we predict that aerobic soils are primary sources of NO and that N2O is produced only when there is sufficient soil moisture to provide the anaerobic microsites necessary for denitrification by either denitrifiers or nitrifiers.  相似文献   

13.
Nitrate uptake and nitrite efflux patterns in Nostoc MAC showed a rapid phase followed by their saturation. Nitrite efflux was maximum in nitrate medium whereas the cells incubated in N2 and NH 4 + media exhibited a decreased nitrite efflux activity. The simultaneous presence of NH 4 + and nitrate significantly decreased nitrite efflux. L-Methionine-Dl-sulphoximine (MSX) prevented inhibition of nitrite efflux by NH 4 + . In the dark there was negligible nitrite efflux, whereas illumination increased the rate of nitrite efflux significantly. The nitrite efflux system was maximally operative at pH 8.0, 30°C and a photon fluence rate of 50 mol m-2. s-1. These results confirm that (i) the nitrite efflux system in Nostoc MAC is dependent upon nitrate uptake and assimilation and is repressible by NH 4 + ; (ii) NH 4 + itself is not the actual repressor of nitrite efflux; a product of NH 4 + assimilation via glutamine synthetase (GS) is required for repression to occur; (iii) the catalytic function of GS does not appear to be involved in nitrate assimilation-dependent nitrite efflux, and (iv) the optimum pH, temperature and illumination for maximum nitrite efflux were found to be 8.0, 30°C and 50mol m-2. s respectively.B.B. Singh, P.K. Pandey and P.S. Bisen are with the Department of Microbiology, Barkatullah University. Bhopal 462026, India. S.Singh is with the Department of Microbiology, School of Life Sciences, North Maharashtra University, Jalgaon, India  相似文献   

14.
China is the world's largest producer and consumer of fertilizer N, and decades of overuse has caused nitrate leaching and possibly soil acidification. We hypothesized that this would enhance the soils' propensity to emit N2O from denitrification by reducing the expression of the enzyme N2O reductase. We investigated this by standardized oxic/anoxic incubations of soils from five long‐term fertilization experiments in different regions of China. After adjusting the nitrate concentration to 2 mM, we measured oxic respiration (R), potential denitrification (D), substrate‐induced denitrification, and the denitrification product stoichiometry (NO, N2O, N2). Soils with a history of high fertilizer N levels had high N2O/(N2O+N2) ratios, but only in those field experiments where soil pH had been lowered by N fertilization. By comparing all soils, we found a strong negative correlation between pH and the N2O/(N2O+N2) product ratio (r2 = 0.759, P < 0.001). In contrast, the potential denitrification (D) was found to be a linear function of oxic respiration (R), and the ratio D/R was largely unaffected by soil pH. The immediate effect of liming acidified soils was lowered N2O/(N2O+N2) ratios. The results provide evidence that soil pH has a marginal direct effect on potential denitrification, but that it is the master variable controlling the percentage of denitrified N emitted as N2O. It has been known for long that low pH may result in high N2O/(N2O+N2) product ratios of denitrification, but our documentation of a pervasive pH‐control of this ratio across soil types and management practices is new. The results are in good agreement with new understanding of how pH may interfere with the expression of N2O reductase. We argue that the management of soil pH should be high on the agenda for mitigating N2O emissions in the future, particularly for countries where ongoing intensification of plant production is likely to acidify the soils.  相似文献   

15.
In experiments on the prebiotic formation of nitric oxides, anoxic mixtures of N2 and water vapour were sparked in contact with phosphate buffer solutions at various pH values. Nitrite was found in the aqueous phase, and nitrate grew from it, presumably by reaction with H2O2. In acid solutions, these anions were reduced and destroyed by Fe2+, and the same was true of nitrite in solutions kept at a pH value similar to that of the contemporary ocean (8.2) with HEPES buffer. Nitrate was not destroyed in short-term experiments, but as in sparking nitrate is formed only via nitrite, neither anion could accumulate. In further sparking experiments with alkaline sulphide, both nitrite and nitrate were reduced entirely. It is concluded that it is unlikely that the primeval ocean contained appreciable concentrations of nitrite or nitrate either at the reducing or at the redox-neutral stage.  相似文献   

16.
Role of nitrification and denitrification for NO metabolism in soil   总被引:3,自引:0,他引:3  
Release and uptake of NO was measured in a slightly alkaline (pH 7.8) and an acidic (pH 4.7) cambisol. In the alkaline soil under aerobic conditions, NO release was stimulated by ammonium and inhibited by nitrapyrin. Nitrate accumulated simultaneously and was also inhibited by nitrapyrin.15NO was released after fertilization with15NH4NO3 but not with NH4 15NO3. The results indicate that in aerobic alkaline cambisol NO was mainly produced during nitrification of ammonium. The results were different under anaerobic conditions and also in the acidic cambisol. There, NO release was stimulated by nitrate and not by ammonium, and was inhibited by chlorate and not by nitrapyrin indicating that NO production was exclusively due to reduction of nitrate. The results were confirmed by15NO being released mainly from NH4 15NO3 rather than from15NH4NO3. The observed patterns of NO release were explained by the NO production processes being stimulated by either ammonium or nitrate in the two different soils, whereas the NO consumption processes being only stimulated by nitrate. NO release was larger than N2O release, but both were small compared to changes in concentrations of soil ammonium or nitrate.(*request for offprints)  相似文献   

17.
The emissions of nitrous oxide (N2O) and nitric oxide (NO) from biological nitrogen removal (BNR) operations via nitrification and denitrification is gaining increased prominence. While many factors relevant to the operation of denitrifying reactors can influence N2O and NO emissions from them, the role of different organic carbon sources on these emissions has not been systematically addressed or interpreted. The overall goal of this study was to evaluate the impact of three factors, organic carbon limitation, nitrite concentrations, and dissolved oxygen concentrations on gaseous N2O and NO emissions from two sequencing batch reactors (SBRs), operated, respectively, with methanol and ethanol as electron donors. During undisturbed ultimate‐state operation, emissions of both N2O and NO from either reactor were minimal and in the range of <0.2% of influent nitrate‐N load. Subsequently, the two reactors were challenged with transient organic carbon limitation and nitrite pulses, both of which had little impact on N2O or NO emissions for either electron donor. In contrast, transient exposure to oxygen led to increased production of N2O (up to 7.1% of influent nitrate‐N load) from ethanol grown cultures, owing to their higher kinetics and potentially lower susceptibility to oxygen inhibition. A similar increase in N2O production was not observed from methanol grown cultures. These results suggest that for dissolved oxygen, but not for carbon limitation or nitrite exposure, N2O emission from heterotrophic denitrification reactors can vary as a function of the electron donor used. Biotechnol. Bioeng. 2010; 106: 390–398. © 2010 Wiley Periodicals, Inc.  相似文献   

18.
Nitrous oxide production was measured in intact cores taken from active pasture and old-growth forest Inceptisols in the Atlantic Lowlands of Costa Rica. Following additions of aqueous KNO3 or glucose, or the two combined amendments, the cores were incubated in the laboratory to determine if N2O production rates were either N-limited or C-limited in the two land use types. Differences in rates of denitrification (N22O + N2 production) among amended forest and pasture soils were determined by addition of 10% C2H2.The forest soils were relatively insensitive to all amendment additions, including the acetylene block. Forest N2O production rates among the treatments did not differ from the controls, and were consistently lower than those of the pasture soils. With the addition of glucose plus nitrate to the forest soils, production of N2O was three times greater than the controls, although this increase was not statistically significant. On the other hand, the pasture soils were definitely nitrogen-limited since N2O production rates were increased substantially beyond controls by all the amendments which contained nitrate, despite the very low N level (5 mg N kg–1 soil) relative to typical fertilizer applications. With respect to the nitrate plus glucose plus acetylene treatment, denitrification was high in the pasture soils; N2O production in the presence of C2H2 was 150% of the rate of N2O production measured in the absence of the acetylene block. The results are discussed in relation to the effects of agricultural land use practices and subsequent impacts of disturbance on N2O release.  相似文献   

19.
20.
Summary A new thermophilic Bacillus strain 3183 (ATCC 49341) was isolated from hot-spring sediments. The organism grew on pullulan as a carbon source and showed optimum pH and temperature at pH 5.5 and 62° C, respectively, for growth. The strain reduced nitrate to nitrite both aerobically and anaerobically. It produced extracellular thermostable pullulanase and saccharidase activities which degraded pullulan and starch into maltotriose, maltose, and glucose. Medium growth conditions for pullulanase production were optimized. The optimum pH and temperature for pullulanase activity were at pH 6.0 and 75° C, respectively. The enzyme was stable at pH 5.5-7.0 and temperature up to 70° C in the absence of substrate. The K m for pullulan at pH 6.0 and 75° C was 0.4 mg/ml. The pullulanase activity was stimulated and stabilized by Ca2+. It was inhibited by ethylenediaminetetraacetate (EDTA), beta and gamma-cyclodextrins but not by alpha-cyclodextrin and reagents that inhibit essential enzyme SH-groups. Offprint requests to: B. C. Saha  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号