首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
N J Cosper  V M D'souza  R A Scott  R C Holz 《Biochemistry》2001,40(44):13302-13309
The Co and Fe K-edge extended X-ray absorption fine structure (EXAFS) spectra of the methionyl aminopeptidase from Escherichia coli (EcMetAP) have been recorded in the presence of 1 and 2 equiv of either Co(II) or Fe(II) (i.e., [Co(II)_(EcMetAP)], [Co(II)Co(II)(EcMetAP)], [Fe(II)_(EcMetAP)], and [Fe(II)Fe(II)(EcMetAP)]). The Fourier transformed data of both [Co(II)_(EcMetAP)] and [Co(II)Co(II)(EcMetAP)] are dominated by a peak at ca. 2.05 A, which can be fit assuming 5 light atom (N,O) scatterers at 2.04 A. Attempts to include a Co-Co interaction (in the 2.4-4.0 A range) in the curve-fitting parameters were unsuccessful. Inclusion of multiple-scattering contributions from the outer-shell atoms of a histidine-imidazole ring resulted in reasonable Debye-Waller factors for these contributions and a slight reduction in the goodness-of-fit value (f '). These data suggest that a dinuclear Co(II) center does not exist in EcMetAP and that the first Co atom is located in the histidine-ligated side of the active site. The EXAFS data obtained for [Fe(II)_(EcMetAP)] and [Fe(II)Fe(II)(EcMetAP)] indicate that Fe(II) binds to EcMetAP in a similar site to Co(II). Since no X-ray crystallographic data are available for any Fe(II)-substituted EcMetAP enzyme, these data provide the first glimpse at the Fe(II) active site of MetAP enzymes. In addition, the EXAFS data for [Co(II)Co(II)(EcMetAP)] incubated with the antiangiogenesis drug fumagillin are also presented.  相似文献   

2.
Cobalt(II) oxidation in aquatic environments has been shown to be linked to Mn(II) oxidation, a process primarily mediated by bacteria. This work examines the oxidation of Co(II) by the spore-forming marine Mn(II)-oxidizing bacterium Bacillus sp. strain SG-1, which enzymatically catalyzes the formation of reactive nanoparticulate Mn(IV) oxides. Preparations of these spores were incubated with radiotracers and various amounts of Co(II) and Mn(II), and the rates of Mn(II) and Co(II) oxidation were measured. Inhibition of Mn(II) oxidation by Co(II) and inhibition of Co(II) oxidation by Mn(II) were both found to be competitive. However, from both radiotracer experiments and X-ray spectroscopic measurements, no Co(II) oxidation occurred in the complete absence of Mn(II), suggesting that the Co(II) oxidation observed in these cultures is indirect and that a previous report of enzymatic Co(II) oxidation may have been due to very low levels of contaminating Mn. Our results indicate that the mechanism by which SG-1 oxidizes Co(II) is through the production of the reactive nanoparticulate Mn oxide.  相似文献   

3.
Cobalt(II) oxidation in aquatic environments has been shown to be linked to Mn(II) oxidation, a process primarily mediated by bacteria. This work examines the oxidation of Co(II) by the spore-forming marine Mn(II)-oxidizing bacterium Bacillus sp. strain SG-1, which enzymatically catalyzes the formation of reactive nanoparticulate Mn(IV) oxides. Preparations of these spores were incubated with radiotracers and various amounts of Co(II) and Mn(II), and the rates of Mn(II) and Co(II) oxidation were measured. Inhibition of Mn(II) oxidation by Co(II) and inhibition of Co(II) oxidation by Mn(II) were both found to be competitive. However, from both radiotracer experiments and X-ray spectroscopic measurements, no Co(II) oxidation occurred in the complete absence of Mn(II), suggesting that the Co(II) oxidation observed in these cultures is indirect and that a previous report of enzymatic Co(II) oxidation may have been due to very low levels of contaminating Mn. Our results indicate that the mechanism by which SG-1 oxidizes Co(II) is through the production of the reactive nanoparticulate Mn oxide.  相似文献   

4.
In an effort to probe the structure of a group Bb metallo-beta-lactamase, Co(II)-substituted ImiS was prepared and characterized by electronic absorption, NMR, and EPR spectroscopies. ImiS containing 1 equiv of Co(II) (Co(II)(1)-ImiS) was shown to be catalytically active. Electronic absorption studies of Co(II)(1)-ImiS revealed the presence of two distinct features: (1) an intense sulfur to Co(II) ligand to metal charge transfer band and (2) less intense, Co(II) ligand field transitions that suggest 4-coordinate Co(II) in Co(II)(1)-ImiS. (1)H NMR studies of Co(II)(1)-ImiS suggest that one histidine, one aspartic acid, and one cysteine coordinate the metal ion in Co(II)(1)-ImiS. The addition of a second Co(II) to Co(II)(1)-ImiS did not result in any additional solvent-exchangeable NMR resonances, strongly suggesting that the second Co(II) does not bind to a site with histidine ligands. EPR studies reveal that the metal ion in Co(II)(1)-ImiS is 4-coordinate and that the second Co(II) is 5/6 coordinate. Taken together, these data indicate that the catalytic site in ImiS is the consensus Zn(2) site, in which Co(II) (and by extrapolation Zn(II)) is 4-coordinate and bound by Cys221, His263, Asp120, and probably one solvent water molecule. These studies also show that the second, inhibitory metal ion does not bind to the consensus Zn(1) site and that the metal ion binds at a site significantly removed from the active site. These results give the first structural information on metallo-beta-lactamase ImiS and suggest that the second metal binding site in ImiS may be targeted for inhibitors.  相似文献   

5.
In an effort to probe Co(II) binding to metallo-beta-lactamase CcrA, EPR, EXAFS, and (1)H NMR studies were conducted on CcrA containing 1 equiv (1-Co(II)-CcrA) and 2 equiv (Co(II)Co(II)-CcrA) of Co(II). The EPR spectra of 1-Co(II)-CcrA and Co(II)Co(II)-CcrA are distinct and indicate 5/6-coordinate Co(II) ions. The EPR spectra also reveal the absence of significant spin-exchange coupling between the Co(II) ions in Co(II)Co(II)-CcrA. EXAFS spectra of 1-Co(II)-CcrA suggest 5/6-coordinate Co(II) with two or more histidine ligands. EXAFS spectra of Co(II)Co(II)-CcrA also indicate 5/6 ligands at a similar average distance to 1-Co(II)-CcrA, including an average of about two histidines per Co(II). (1)H NMR spectra for 1-Co(II)-CcrA revealed seven paramagnetically shifted resonances, three of which were solvent-exchangeable, while the NMR spectra for Co(II)Co(II)-CcrA showed at least 16 shifted resonances, including an additional solvent-exchangeable resonance and a resonance at 208 ppm. The data indicate sequential binding of Co(II) to CcrA and that the first Co(II) binds to the consensus Zn(1) site in the enzyme.  相似文献   

6.
We have examined the Co(II) and Zn(II) affinity of the prototype ferredoxin maquette ligand, NH(2)-KLCEGG.CIACGAC.GGW-CONH2 (IAA), which was originally designed to bind a [4Fe-4S] cluster. UV-Vis spectroscopy demonstrates tight 1:1 complex formation between Co(II) and IAA. The intensity of the S-->Co(II) charge transfer bands at 304 and 340 nm and the ligand field bands between 630 and 728 nm indicate Co(II) coordination by the four cysteine thiolates of IAA in a pseudo-tetrahedral geometry. A dissociation constant value of 5.3 microM was determined for the Co(II)-IAA complex at pH 6.5. Zn(II) readily displaces Co(II) from IAA as evinced by loss of the Co(II) spectral features. The dissociation constant for Zn(II), 20 pM at pH 6.5, was determined be competition experiments with Co(II)-IAA. These results demonstrate that the ferredoxin maquette ligand is an excellent ligand for Zn(II).  相似文献   

7.
《Inorganica chimica acta》1988,152(2):139-143
The visible and magnetic circular dichroism (MCD) spectra of Co(II) derivatives of Rhus vernicifera laccase are reported. Anaerobic incorporation of 1 g-atom of Co(II) into apolaccase gave bands at 528(ϵ = 248), 558 (254) and 589 nm (shoulder) attributable to dd transitions. The MCD spectrum in the corresponding region is similar to that of Co(II)-substituted hemocyanin, indicating that the Co(II) ion incorporated into apolaccase is tetrahedral. On increasing the amount of Co(II) ion acting on the apolaccase, both the intensities of the absorption and the MCD spectra increased, and 2 g-atoms of tetrahedral Co(II) ion were introduced into the apolaccase. Very similar absorption and MCD spectra were obtained when laccase whose type I copper site was occupied by Hg(II) and both type II and type III copper sites were vacant (TlHg apolaccase) was treated with Co(II); this clearly supports the hypothesis that Co(II) cannot be incorporated into a type I copper site but may possibly be incorporated into a type III copper site. A tetrahedral Co(II) ion was also introduced into a type II copper site of type II copper-depleted (T2D) laccase, although its MCD bands were shifted ca. 20 nm to the longer wavelength region from the MCD bands due to tetrahedral Co(II) ion incorporated into type III copper site(s). The present study demonstrate that a tetrahedral Co(II) ion is introduced into type II or type III copper site(s) of laccase.  相似文献   

8.
Pseudoazurin is an electron transfer copper protein, a member of the cupredoxin family. The protein is frequently found in denitrifying bacteria, where it is the electron donor of nitrite reductase. The copper at the active site is coordinated to His40, Cys78, His81 and Met86 in a distorted tetragonal geometry. We have recorded and assigned the (1)H NMR spectra of Co(II)-substituted pseudoazurin from Achromobacter cycloclastes. The (1)H NMR spectrum of Co(II)-pseudoazurin closely resembles that of Co(II)-rusticyanin, reflecting an altered conformation for the Met-Co(II)-Cys moiety in both proteins, compared to Co(II)-azurin, amicyanin and stellacyanin. The electron spin density onto the Sgamma(Cys) is larger in Co(II)-pseudoazurin compared to Co(II)-rusticyanin. Instead, the Co(II)-Met interaction is similar in both derivatives. Hence, the different metal-ligand interactions might be independently modulated by the protein structure. The present work also shows that the electron spin density onto the Co(II)-S(cys) bond is sensibly smaller than the Cu(II)-S(cys). Notwithstanding, NMR data on Co(II)-substituted blue copper proteins can be safely extrapolated to native Cu(II) proteins.  相似文献   

9.
This paper reports biosorption of Zn(II), Cu(II) and Co(II) onto O. angustissima biomass from single, binary and ternary metal solutions, as a function of pH and metal concentrations via Central Composite Design generated by statistical software package Design Expert 6.0. The experimental design revealed that metal interactions could be best studied at lower pH range i.e. 4.0-5.0, which facilitates adequate availability of all the metal ions. The sorption capacities for single metal decreased in the order Zn(II)>Co(II)>Cu(II). In absence of any interfering metals, at pH 4.0 and an initial metal concentration of 0.5 mM in the solution, the adsorption capacities were 0.33 mmol/g Zn(II), 0.26 mmol/g Co(II) and 0.12 mmol/g Cu(II). In a binary system, copper inhibited both Zn(II) and Co(II) sorption but the extent of inhibition of former was greater than the latter; sorption values being 0.14 mmol/g Zn(II) and 0.27 mmol/g Co(II) at initial Zn(II) and Co(II) concentration of 1.5 mM each, pH 4.0 and 1mM Cu(II) as the interfering metal. Zn(II) and Co(II) were equally antagonistic to each others sorption; Zn(II) and Co(II) sorption being 0.23 and 0.24 mmol/g, respectively, at initial metal concentration of 1.5 mM each, pH 4.0 and 1mM interfering metal concentration. In contrast, Cu(II) sorption remained almost unaffected at lower concentrations of the competing metals. Thus, in binary system inhibition dominance observed was Cu(II)>Zn(II), Cu(II)>Co(II) and Zn(II) approximately Co(II), due to this the biosorbent exhibited net preference/affinity for Cu(II) sorption over Zn(II) or Co(II). Hence, the affinity series showed a trend of Cu(II)>Co(II)>Zn(II). In a ternary system, increasing Co(II) concentration exhibited protection against the inhibitory effect of Cu(II) on Zn(II) sorption. On the other hand, the inhibitory effect of Zn(II) and Cu(II) on Co(II) sorption was additive. The model equation for metal interactions was found to be valid within the design space.  相似文献   

10.
Co(II) ions increase the Vmax of clostridiopeptidase A, producing a maximum stimulation of overall enzymic activity of 120%. Co(II) does not displace Zn(II) from the active site, nor Ca(II) from its binding site on the enzyme. There appears to be an additional transition metal-binding site on clostridiopeptidase A, accepting Zn(II), which is inhibitory (Ki = 550 microM), or Co(II), which is stimulatory (Kact = 200 microM).  相似文献   

11.
The role of zinc in liver alcohol dehydrogenase has been studied by replacement of 1.3 and 3.5 of the four Zn(II) ions with Co(II) and measuring the effects of the paramagnetic Co(II) on the relaxation rates of the protons of water, ethanol, and isobutyramide. Water relaxation studies at 8, 24, 100, and 220 MHz indicate two classes of bound Co(II). The similar to 2 readily replaced Co(II) ions retain one fast exchanging water proton in their inner coordination spheres, while the similar to 2 slowly exchanging Co(II) ions coordinate no detectable water protons, indicating that the former replaced Zn(II) at the "catalytic sites" and the latter replaced Zn(II) at the "structural sites" detected crystallographically. Ethanol, acetaldehyde, and isobutyramide bind with appropriate affinities to the Co(II) substituted alcohol dehydrogenases decreasing the number of fast exchanging protons at the catalytic Co(II) site by greater than or equal to 54 percent. Coenzyme binding causes smaller changes in the water relaxation rate which may be due to local conformation changes. The paramagnetic effects of Co(II) at the catalytic site on the relaxation rates of the methyl protons of isobutyramide at 100 and 220 MHz indicate that this analog binds at a site 9.1 A from the catalytic Co(II). This distance decreases to 6.9 A when NADH is bound, and a Co(II) to methyne proton distance of 6.6 A is determined indicating a conformation change leading to the formation of a second sphere enzyme-Co(II)-isobutyramide complex in which a hydroxyl or water ligand intervenes between the metal and the substrate analog. Similar behavior is observed in the enzyme-ethanol complexes. The paramagnetic effects of Co(II), at the catalytic site, on the relaxation rates of the protons of ethanol at 100 and 220 MHz, indicate that this substrate bind at a site 12-14 A distant from the catalytic Co(II) but that this distancedecreases to 6.3 A in the abortive enzyme-NADH-ethanol complex. The role of the catalytic Co(II) thus appears to be the activation of a hydroxyl or water ligand which polarizes the aldehyde carbonyl group by hydrogen bonding. The role of the structural Co(II), which is more distant from isobutyramide (9-11 A), may be that of a template for protein conformation changes. By combining the present distances with those from previous magnetic resonance studies on the liver enzyme, the arrangement of coenzyme, metal, and substrate at the active site in solution can be constructed. This arrangement is consistent with that of ADP-ribose and zinc in the crystalline complex of liver alcohol dehydrogenase as determined by X-ray crystallography (Branden et al., (1973), Proc. Natl. Acad. Sci. U.S.A.70, 2439).  相似文献   

12.
Enzyme elements that are involved in the reversible cyclization of L-carbamylaspartate to L-dihdroorotate catalyzed by dihydroorotase (EC 3.5.2.3) from Clostridium oroticum (ATCC 25750) have been studied. Removal of Zn(II) from the enzyme by chelators followed by incubation of apoenzyme with Co(II) results in replacement of two to three of the four Zn(II) ions per molecule by Co(II). The catalytic properties of the Zn(II)Co(II) dihydroorotase are different from those of native enzyme. The Vmax is increased for both the synthesis and hydrolysis of L-dihydroorotate. The Km for L-dihydroorotate is unchanged, while the Km for L-carbamylaspartate is increased more than twofold. On the other hand, the kinetic properties of Zn(II)-reconstituted dihydroorotase are indistinguishable from those of native enzyme. The pH dependence of Vmax is also altered by the Co(II) substitution. For both Zn(II)- and Zn(II)Co(II)-dihydroorotase, this pH dependence is well described by a single ionization and the pK's for L-dihydroorotate synthesis and hydrolysis are different. Substitution with Co(II) increases the pK for both reaction directions to different extents. These results strongly support a role for the tightly bound metals in the catalytic mechanism. In addition, diethylpyrocarbonate rapidly inactivates the enzyme. The inactivation is prevented by L-dihydroorotate. This result is consistent with a role for at least one histidine in catalysis. The possibility that C. oroticum dihydroorotase may be useful model for the more complex mammalian enzyme is considered.  相似文献   

13.
Exposure of cobalt (II) carboxypeptidase Aα, [(CPD)Co(II)], to small molar excesses of the oxidizing agent m-chloroperbenzoate rapidly destroys (< 30 sec) both its peptidase and esterase activities in parallel. Concomitantly, the characteristic Co(II) electron paramagentic resonance (EPR) signal is abolished. [(CPD)Co(III)], isolated from the reaction mixture, has the same molecular weight and amino acid composition as [(CPD)Co(II)], contains 0.95 g-atom of Co and 0.01 g-atom of Zn per mole of protein, does not exhibit an EPR spectrum and is catalytically completely inactive towards both peptide and ester substrates. Identical treatment of the native zinc enzyme affects neither its catalytic activity nor its metal content. The reaction of m-chloroperbenzoate with [(CPD)Co(II)] follows saturation kinetics and is prevented by the inhibitor β-phenylpropionate. Furthermore, under the conditions found to oxidize [(CPD)Co(II)] effectively, there is no reaction with Co(II) E. coli alkaline phosphatase. Thus, m-chloroperbenzoate has the characteristics of an active-site directed oxidizing reagent for [(CPD)Co(II)].  相似文献   

14.
The X-ray crystal structure of the Co(II)-loaded form of the aminopeptidase from Aeromonas proteolytica ([CoCo(AAP)]) was solved to 2.2A resolution. [CoCo(AAP)] folds into an alpha/beta globular domain with a twisted beta-sheet hydrophobic core sandwiched between alpha-helices, identical to [ZnZn(AAP)]. Co(II) binding to AAP does not introduce any major conformational changes to the overall protein structure and the amino acid residues ligated to the dicobalt(II) cluster in [CoCo(AAP)] are the same as those in the native Zn(II)-loaded structure with only minor perturbations in bond lengths. The Co(II)-Co(II) distance is 3.3A. Tris(hydroxymethyl)aminomethane (Tris) coordinates to the dinuclear Co(II) active site of AAP with one of the Tris hydroxyl oxygen atoms (O4) forming a single oxygen atom bridge between the two Co(II) ions. This is the only Tris atom coordinated to the metals with Co1-O and Co2-O bonds distances of 2.2 and 1.9A, respectively. Each of the Co(II) ions resides in a distorted trigonal bipyramidal geometry. This important structure bridges the gap between previous structural and spectroscopic studies performed on AAP and is discussed in this context.  相似文献   

15.
The geochemical cycling of cobalt (Co) has often been considered to be controlled by the scavenging and oxidation of Co(II) on the surface of manganese [Mn(III,IV)] oxides or manganates. Because Mn(II) oxidation in the environment is often catalyzed by bacteria, we have investigated the ability of Mn(II)-oxidizing bacteria to bind and oxidize Co(II) in the absence of Mn(II) to determine whether some Mn(II)-oxidizing bacteria also oxidize Co(II) independently of Mn oxidation. We used the marine Bacillus sp. strain SG-1, which produces mature spores that oxidize Mn(II), apparently due to a protein in their spore coats (R.A. Rosson and K. H. Nealson, J. Bacteriol. 151:1027-1034, 1982; J. P. M. de Vrind et al., Appl. Environ. Microbiol. 52:1096-1100, 1986). A method to measure Co(II) oxidation using radioactive 57Co as a tracer and treatments with nonradioactive (cold) Co(II) and ascorbate to discriminate bound Co from oxidized Co was developed. SG-1 spores were found to oxidize Co(II) over a wide range of pH, temperature, and Co(II) concentration. Leucoberbelin blue, a reagent that reacts with Mn(III,IV) oxides forming a blue color, was found to also react with Co(III) oxides and was used to verify the presence of oxidized Co in the absence of added Mn(II). Co(II) oxidation occurred optimally around pH 8 and between 55 and 65°C. SG-1 spores oxidized Co(II) at all Co(II) concentrations tested from the trace levels found in seawater to 100 mM. Co(II) oxidation was found to follow Michaelis-Menten kinetics. An Eadie-Hofstee plot of the data suggests that SG-1 spores have two oxidation systems, a high-affinity-low-rate system (Km, 3.3 × 10-8 M; Vmax, 1.7 × 10-15 M · spore-1 · h-1) and a low-affinity-high-rate system (Km, 5.2 × 10-6 M; Vmax, 8.9 × 10-15 M · spore-1 · h-1). SG-1 spores did not oxidize Co(II) in the absence of oxygen, also indicating that oxidation was not due to abiological Co(II) oxidation on the surface of preformed Mn(III,IV) oxides. These results suggest that some microorganisms may directly oxidize Co(II) and such biological activities may exert some control on the behavior of Co in nature. SG-1 spores may also have useful applications in metal removal, recovery, and immobilization processes.  相似文献   

16.
Coir pith was chemically modified for the adsorption of cobalt(II) ions from aqueous solution. Chemical modification was done by esterification using succinic anhydride followed by activation with NaHCO(3) in order to improve the adsorption of Co(II). Adsorptive removal of Co(II) from aqueous solution onto modified coir pith was evaluated in batch studies under varying conditions of agitation time and metal ion concentration to assess the kinetic and equilibrium parameters. A pseudo-second-order kinetic model fitted well for the sorption of Co(II) onto modified coir pith. Sorption kinetics showed that the loading of Co(II) by this material was quite fast under ambient conditions. The Langmuir and Freundlich equilibrium isotherm models provided excellent fits for the adsorption data, with R(2) of 0.99 and 0.98, respectively. After esterification, the maximum Co(II) sorption loading Q(0); was greatly improved. It is evident that chemically modified adsorbent exhibits better Co(II) removal capability than raw adsorbent suggesting that surface modification of the adsorbent generates more adsorption sites on its solid surface for metal adsorption. A complete recovery of the adsorbed metal ions from the spent adsorbent was achieved by using 1.0N HCl.  相似文献   

17.
Cobalt (3) carboxypeptidase A: preparation and esterase activity   总被引:1,自引:0,他引:1  
Co(II) carboxypeptidase A has been oxidized to Co(III) carboxypeptidase A with hydrogen peroxide. The resultant metalloprotein has an absorption spectrum different from that of the Co(II) enzyme and the metal is no longer removable by dialysis. The Co(III) carboxypeptidase A retains esterase activity comparable to that of the Co(II) enzyme and has very low peptidase activity. This demonstrates that scission of a bond to the first coordination sphere of the metal is not necessary for the hydrolysis of ester substrates.  相似文献   

18.
Three cobalt derivatives of bovine erythrocyte superoxide dismutase (superoxide:superoxide oxidoreductase, EC 1.15.1.1) have been prepared under different pH conditions using a cobalt-thiocyanate complex which has already proved to yield specific substitutions on other copper proteins. The cobalt-protein derivatives have been characterized by optical, circular dichroism and fluorescence spectroscopies. One derivative, referred to as Co2Co2-protein, contains Co(II) ions specifically bound at both Zn(II) and Cu(II) sites. On the basis of their spectroscopic properties, the other two derivatives can be referred as E2Co2- and Co2E2-superoxide dismutase, with cobalt substituting, respectively, at the zinc and the copper sites leaving the contiguous site empty (E). The Co2E2-protein complex represents a novel derivative, since it has never been described in literature. The optical spectrum in the visible region of Co2-Co2-protein well corresponds to the sum of the spectra of the other two derivatives. The circular dichroism spectrum of Co2Co2-derivative, however, is not the sum of individual E2Co2- and Co2E2-proteins, suggesting that the presence of Co(II) in one site strongly affects the geometry of the neighbouring site. Some discrepancies between our spectroscopic data and those reported in literature are discussed. The results obtained from fluorescence experiments indicate that Co(II) ions exert a different quenching effect on the tyrosine emission, depending on whether they are located in the Zn(II) or in the Cu(II) site. The fluorescence quenching can be attributed to a 'heavy atom' and 'paramagnetic ion' effect by Co(II) ions.  相似文献   

19.
Poly(N-vinylimidazole), PVIm, gels were prepared by γ-irradiation polymerization of N-vinylimidazole in aqueous solutions. These affinity gels with a water swelling ratio of 1800% for plain polymeric gel and between 30 and 80% for Cu(II) and Co(II)-chelated gels at pH 6.0 in phosphate buffer were used in glucose oxidase (GOx) adsorption–desorption studies. Different amounts of Cu(II) and Co(II) ions (maximum 3.64 mmol/g dry gel for Cu(II) and 1.72 mmol/g dry gel for Co(II)) were loaded onto the gels by changing the initial concentration of Cu(II) and Co(II) ions, and pH. GOx adsorption on these gels from aqueous solutions containing different amount of GOx at different pH was investigated in batch reactors. Immobilized glucose oxidase activity onto the poly(N-vinylimidazole), and Cu(II) and Co(II)-chelated poly(N-vinylimidazole) were investigated with changing pH and the initial glucose oxidase concentration. Maximum activity of immobilized glucose oxidase onto the PVIm, Cu(II) and Co(II)-chelated PVIm gels was investigated and pH dependence was observed to be at pH 6.5 for free enzyme, pH 7.0 for PVIm, pH 7.5 for Cu(II) and Co(II)-chelated PVIm gels, respectively. The stability of the immobilized enzyme is very high for all gels and the residual activity was higher than 93% in the first 10 days.  相似文献   

20.
Summary Ferredoxin fromClostridium pasteurianum substituted with two Co atoms did not give any cobalt EPR signal at 8 K as isolated, but upon reduction with sodium dithionite, a broad signal appeared withg values that indicate highspin (S=3/2) Co(II). These signals were distinct from Co(II)-dithiothreitol signals, and disappeared upon reoxidation with air. Under anaerobic incubation of apoferredoxin with Co(II), a green derivative showed a visible spectrum typical of tetrahedral Co(Il)-thiolate coordination, which shifted dramatically upon exposure to air. The1H-NMR spectrum of the aerobically isolated protein is reported at 300 MHz; magnetic susceptibility measurements were indicative of a diamagnetic species. These spectroscopic studies indicate that Co(II)-substituted ferredoxin is oxidized to low-spin Co(III)-ferredoxin in the presence of sulfide and oxygen. The diamagnetic Co(III) state could reversibly be reduced to highspin Co(II) by sodium dithionite.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号